Vol. 117 No. 1 (2023)
Research Papers

Prediction of the nutritional values by INRA (2018) feed evaluation system of Megathyrsus maximus subjected to different grazing strategies

Santiago Alexander Guamán Rivera
Escuela Superior Politècnica de Chimborazo (ESPOCH), sede Orellana, El Coca 220150, Ecuador
Angela Edith Guerrero-Pincay
Escuela Superior Politècnica de Chimborazo (ESPOCH), sede Orellana, El Coca 220150, Ecuador
Nelson Rene Ortiz-Naveda
Escuela Superior Politècnica de Chimborazo (ESPOCH), sede Orellana, El Coca 220150, Ecuador
Raúl Lorenzo González-Marcillo
Escuela Superior Politècnica de Chimborazo (ESPOCH), sede Orellana, El Coca 220150, Ecuador

Published 2023-06-29


  • Feeding values,
  • Forage quality,
  • Methane emission,
  • Small-livestock farmers

How to Cite

Guamán Rivera, S. A., Guerrero-Pincay, A. E., Ortiz-Naveda, N. R., & González-Marcillo, R. L. (2023). Prediction of the nutritional values by INRA (2018) feed evaluation system of Megathyrsus maximus subjected to different grazing strategies. Journal of Agriculture and Environment for International Development (JAEID), 117(1), 117–140. https://doi.org/10.36253/jaeid-14203


Grazing management is a key element to optimize growth cycle of forages, which are enhanced in their chemical composition leading to the reception of greater nutritive values for feeding ruminants. Several studies have showed that the accuracy and precision of the feeding values are critical to achieve this goal, unfortunately, in Ecuador there are not referential data, despite of Megathyrsus maximus is the most forage used by livestock farmers. The predominant aim of the current study was to approach and estimate the feeding values by INRA feed evaluation system of Tanzania grass (Megathyrsus maximus) subjected at different grazing strategies. The statistical design was a randomized complete block, with a 3 × 2 factorial arrangement. Where the treatments were combinations of three grazing frequencies (GF) (30 d; termed GF30, 45 d, GF45 and 60 d, GF60) and two cutting heights (CHs; 30 and 45 cm). The agronomic data did not vary by season effect (P = 0.24 to 0.82), but GF60 had higher plant heigh and dry matter (DM) contents (P < 0.001) than other GF, although with less tiller populations (241 vs. 304 tiller/m2). By CHs effect, Tanzania grass at 30 cm had a greater DM content than 45 cm of CHs (5565 vs. 4221 ± 603 kg/ha-1; P = 0.073). All chemical determinations were affected by GF, CHs and their interaction (P < 0.001 to 0.004) with the exception on ADF between CHs (P = 0.50). Whereas only the CP and ADF values were conditioned by season effect (P = 0.001 to 0.011). Subsequently, Tanzania grass subjected at moderate rest periods and low defoliation intensities showed greater energy and proteins values than traditionally used GF60. Based in these findings, the defoliation frequency had influence on agronomic and chemical characteristics, whilst the feeding values was mainly affected by grazing intensities and weather conditions. So, the best combination regarding nutritive values should be at GF30 and GF45 combined with 45 cm of CHs. 


  1. Aganga, A.A., & Tshwenyane, S. (2004). Potentials of Guinea Grass (Panicum maximum) as Forage Crop in Livestock Production. Pakistan Journal of Nutrition, 3(1), 1–4. DOI: https://doi.org/10.3923/pjn.2004.1.4
  2. Amiri, F., Rashid, A., & Shariff, M. (2012). Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin Journal of Science and Technology, 34,577-586.
  3. AOAC. (2000). Official Methods of Analysis. Association of Analytical Chemists. Virginia, USA.
  4. Atalay, H., & Kahriman, F. (2020). Estimation of relative feed value, relative forage quality and net energy lactation values of some roughage samples by using near infrared reflectance spectroscopy. Journal of Istanbul Veterınary Scıences, 4,109-117. DOI: https://doi.org/10.30704/http-www-jivs-net.791669
  5. Aumont, G., Caudron, I., Saminadin, G., & Xande ́, A. (1995). Sources of variation in nutritive values of tropical forages from the Caribbean. Animal Feed Science and Technology, 51,1-13. doi:10.1016/0377-8401(94)00688-6. DOI: https://doi.org/10.1016/0377-8401(94)00688-6
  6. Heredia-r, M., Valencia, L., & Torres, B. (2021). Proceedings of the 1st International Conference on Water Energy Food and Sustainability. Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021). Springer International Publishing. doi:10.1007/978-3-030-75315-3.
  7. Bach, A., Calsamiglia, S., & Stern, M.D. (2005). Nitrogen Metabolism in the Rumen. Journal of Dairy Science, 88,E9-E21.doi:10.3168/jds.S0022-0302(05)73133-7. DOI: https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  8. Barreto-álvarez, D.E., Heredia-rengifo, M.G., Padilla-almeida, O., & Toulkeridis, T. (2020). Multitemporal Evaluation of the Recent Land Use Change in Santa Cruz Island , Galapagos ,In Conference on Information and Communication Technologies of Ecuador (pp. 519-534). Springer, Cham. Springer International Publishing. doi:10.1007/978-3-030-62833-8. DOI: https://doi.org/10.1007/978-3-030-62833-8_38
  9. Batistoti, C., Lempp, B., Jank, L., Morais, M. das G., Cubas, A.C., Gomes, R.A., & Ferreira, M.V.B. (2012). Correlations among anatomical, morphological, chemical and agronomic characteristics of leaf blades in Panicum maximum genotypes. Animal Feed Science and Technology, 171,173-180. doi:10.1016/j.anifeedsci.2011.11.008. DOI: https://doi.org/10.1016/j.anifeedsci.2011.11.008
  10. Ben, F.L., & Toulkeridis, T. (2022). Determining the Effects of Nanonutrient Application in Cabbage (Brassica oleracea var. capitate L.) Using Spectrometry and Biomass Estimation with UAV. Agronomy, 12, 81. DOI: https://doi.org/10.3390/agronomy12010081
  11. Benabderrahim, M.A., & Elfalleh, W. (2021). Forage potential of non-native guinea grass in north african agroecosystems: Genetic, agronomic, and adaptive traits. Agronomy, 11, 1071. doi:10.3390/agronomy11061071. DOI: https://doi.org/10.3390/agronomy11061071
  12. Bradstreet, R.B. (1954). Kjeldahl Method for Organic Nitrogen. Analytical Chemistry, 2:2-4.
  13. Briske, D.D., Derner, J.D., Brown, J.R., Fuhlendorf, S.D., Teague, W.R., Havstad, K. M., Willms, W.D. (2008). Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangeland Ecology and Management, 61,3-17. doi:10.2111/06-159R.1. DOI: https://doi.org/10.2111/06-159R.1
  14. Carnevalli, R.A., Da-Silvsa, S.C., Bueno, F.O., Hodgson, J., Silva, G.N., & Morais, J.P.G. (2006). Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing managements. Tropical Grasslands, 40,165-176.
  15. Carrillo-Oleas, E., Mancero-Oñate, J., & Benavides-Lara, J. (2023). Effect of Silvopastoral Systems on Productive Responses of Brachiaria decumbes. Advanced Composites Bulletin, 5,951-953.
  16. Cedeño-Aristega, J.M., Luna Murillo, R.A., Espinoza Coronel, A.L., & Romero Garaicoa, D.A. (2021). Producción y composición química de Megathyrsus máximus cultivares tanzania y mombasa bajo condiciones del subtrópico ecuatoriano. Ciencia Latina Revista Científica Multidisciplinar, 5, 6427–6443. doi:10.37811//cl_rcm.v5i4.777. DOI: https://doi.org/10.37811//cl_rcm.v5i4.777
  17. Coleman, S.W., & Moore, J.E. (2003). Feed quality and animal performance. Field Crops Research, 84,17-29. doi:10.1016/S0378-4290(03)00138-2. DOI: https://doi.org/10.1016/S0378-4290(03)00138-2
  18. Costa, N. de L., Jank, L., Magalhães, J.A., Bendahan, A.B., Rodrigues, B.H.N., & Santos, F.J. de S. (2021). Forage productivity and chemical composition of Panicum maximum cv. Mombaça under defoliations intensities and frequencies. Research, Society and Development, 10,e42910817494. doi:10.33448/rsd-v10i8.17494. DOI: https://doi.org/10.33448/rsd-v10i8.17494
  19. Costa, N.L., Paulino, V.T., Magalhaes, J.A., Rodrigues, B.H.N., & Santos, F.J.S. (2016). Nitrogen use efficiency, forage yield and morphogenesis of massai grass under fertilization. Embrapa Roraima-Artigo Em Periódico Indexado (ALICE), 12,31-40. doi:10.3738/1982.2278.1695.
  20. Da Silva, S.C., Bueno, A.A.O., Carnevalli, R.A., Silva, G.P., & Chiavegato, M.B. (2019). Nutritive value and morphological characteristics of Mombaça grass managed with different rotational grazing strategies. Journal of Agricultural Science, 157,592-598. doi:10.1017/S0021859620000052. DOI: https://doi.org/10.1017/S0021859620000052
  21. Da Silva, S., Sbrissia, A., & Pereira, L. (2015). Ecophysiology of C4 Forage Grasses-Understanding Plant Growth for Optimising Their Use and Management. Agriculture, 5,598-625. doi:10.3390/agriculture5030598. DOI: https://doi.org/10.3390/agriculture5030598
  22. Daniel, J.B., Van Laar, H., Dijkstra, J., & Sauvant, D. (2020). Evaluation of predicted ration nutritional values by NRC (2001) and INRA (2018) feed evaluation systems, and implications for the prediction of milk response. Journal of Dairy Science, 103,11268-11284. doi:10.3168/jds.2020-18286. DOI: https://doi.org/10.3168/jds.2020-18286
  23. De Lima Veras, E.L., dos Santos Difante, G., Gurgel, A.L.C., da Costa, A.B.G., Rodrigues, J.G., Costa, C.M., Costa, P.R. (2020). Tillering and structural characteristics of panicum cultivars in the Brazilian semiarid region. Sustainability, 12,3849. doi:10.3390/su12093849. DOI: https://doi.org/10.3390/su12093849
  24. De Sousa, G.J., Alexandrino, E., Dos Santos, A.C., & Freitas, M.V.L. (2019). Megathyrsus Maximus cv. Massai at different cutting frequencies. Semina:Ciencias Agrarias, 40,1913-1923. doi:10.5433/1679-0359.2019v40n5p1913. DOI: https://doi.org/10.5433/1679-0359.2019v40n5p1913
  25. Dereje, F., Mulugeta, W., & Geberemariyam, T. (2017). Indexing Ethiopian Feed Stuffs Using Relative Feed Value : Dry Forages and Roughages, Energy Supplements, and Protein Supplements. Journal of Biology, Agriculture and Healthcare, 7,57-60.
  26. Do-Lam, T., Trung-Thanh, N., & Grote, U. (2019). Livestock Production, Rural Poverty, and Perceived Shocks: Evidence from Panel Data for Vietnam. Journal of Development Studies, 55,99-119. doi:10.1080/00220388.2017.1408795. DOI: https://doi.org/10.1080/00220388.2017.1408795
  27. Euclides-Batista, P.V., Junior, N., Carneiro da Silva, S., Difante, G.S., & Amorim Barbosa, R. (2016). Steer performance on Panicum maximum (cv. Mombaca) pastures under two grazing intensities. Animal Production Science, 56,1849-1856. DOI: https://doi.org/10.1071/AN14721
  28. Euclides, V.P.B., Carpejani, G.C., Montagner, D.B., Nascimento Junior, D., Barbosa, R.A., & Difante, G.S. (2018). Maintaining post-grazing sward height of Panicum maximum (cv. Mombaça) at 50 cm led to higher animal performance compared with post-grazing height of 30 cm. Grass and Forage Science, 73,174-182. doi:10.1111/gfs.12292. DOI: https://doi.org/10.1111/gfs.12292
  29. Flury, B.K., & Riedwyl, H. (1986). Standard Distance in Univariate and Multivariate Analysis. The American Statistician, 40(3), 249–251. doi:10.1080/00031305.1986.10475403. DOI: https://doi.org/10.1080/00031305.1986.10475403
  30. Fox, D.G., Tedeschi, L.O., Tylutki, T.P., Russell, J.B., Van Amburgh, M.E., Chase, L.E., Overton, T.R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology, 112,29-78. doi:10.1016/j.anifeedsci.2003.10.006. DOI: https://doi.org/10.1016/j.anifeedsci.2003.10.006
  31. Fulkerson, W., & Donaghy, D.(2001). Plant-soluble carbohydrate reserves and senescence-key criteria for developing an effective grazing management system for ryegrass-based pastures: a review, 41:261-275. DOI: https://doi.org/10.1071/EA00062
  32. GADPO. (2015). Development and Land Management Plan of the Province of Orellana. www.gporellana.gob.ec/. Last accesed on 14th Jun 2022.
  33. Garcez, B.S., Alves, A.A., & Macedo, E.D.O. (2020). Ruminal degradation of Panicum grasses in three post-regrowth ages. Ciência Animal Brasileira, 21,e – 55699. doi:10.1590/1809-6891v21e-55699. DOI: https://doi.org/10.1590/1809-6891v21e-55699
  34. Gómez Villalva, J., Pérez, J.T., Vásconez Galarza, G., & Moran Salazar, C.I. (2021). Rendimiento de biomasa del pasto Saboya (Megathyrsus maximus) con relación a dos frecuencias de corte. Magazine de Las Ciencias Revista de Investigación e Innovación, 6, 55–63. DOI: https://doi.org/10.33262/rmc.v6i2.1251
  35. González Marcillo, R.L., Castro Guamàn, W.E., Guerrero Pincay, A.E., Vera Zambrano, P.A., Ortiz Naveda, N.R., & Guamàn Rivera, S.A. (2021). Assessment of Guinea Grass Panicum maximum under Silvopastoral Systems in Combination with Two Management Systems in Orellana Province, Ecuador. Agriculture, 11(2), 117. doi:10.3390/agriculture11020117. DOI: https://doi.org/10.3390/agriculture11020117
  36. Grant, S.A., Barthram, G.T., King, L.T.J., & Smith, H.K. (1983). Sward management , lamina turnover and tiller population density in continuously stocked Lolium perenne dominated swards. Grass and Forage Science, 38:333-344. DOI: https://doi.org/10.1111/j.1365-2494.1983.tb01657.x
  37. Green, J., & Britten, N. (1998). Qualitative research and evidence based medicine. BMJ, 316:1230–2. DOI: https://doi.org/10.1136/bmj.316.7139.1230
  38. Haydock, K.P., & Shaw, N.H. (1975). The comparative yield method for estimating dry matter yield of pasture. Australian Journal of Experimental Agriculture, 15,663-670. doi:10.1071/EA9750663. DOI: https://doi.org/10.1071/EA9750663
  39. Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M.C. (2013). The roles of livestock in developing countries. Animal, 7:3-18. doi:10.1017/S1751731112001954. DOI: https://doi.org/10.1017/S1751731112001954
  40. Holdridge, L.R. (1967). Life zone ecology. San Jose, Costa Rica: Tropical Science Center.
  41. Horrocks, R.D., & Vallentine, J.F. (1999). Forage Quality. Harvested Forages, 17–47. doi:10.1016/b978-012356255-5/50024-9. DOI: https://doi.org/10.1016/B978-012356255-5/50024-9
  42. INAMHI. (2021). Direccion Gestion Meteorologica Estudios e Investigaciones Meteorologicas, Ecuador. Last accesed on 18th January 2023 www.serviciometerologico.gob.ec, 1–12.
  43. INEC-ESPAC. (2019). Encuesta de Superficie y Producción Agropecuaria. Usos del Suelo. Retrieved 2 November 2019, from https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/. Last access November 11, 2019.
  44. INRA. (2018). Alimentation des ruminants, Éditions Quæ, Versailles, France, 728 p.
  45. Inzunza, J. (2007). Earth’s Climates. In Descriptive Meteorology (p. 31).
  46. Jeranyama, P., & Garcia, AD. (2004). Understanding relative feed value (RFV) and relative forage quality (RFQ). Extension Extra, paper 352.
  47. Keba, H.T., Madakadze, I.C., Angassa, A., & Hassen, A. (2013). Nutritive value of grasses in semi-arid rangelands of Ethiopia: Local experience based herbage preference evaluation versus laboratory analysis. Asian-Australasian Journal of Animal Sciences, 26,366-377. doi:10.5713/ajas.2012.12551. DOI: https://doi.org/10.5713/ajas.2012.12551
  48. Lascano, C.E., & Cárdenas, E. (2010). Revista Brasileira de Zootecnia Alternatives for methane emission mitigation in livestock systems Alternativas para mitigação de emissão de metano em sistemas de criação de animais domésticos. Revista Brasileira de Zootecnia, 2010:175-182. DOI: https://doi.org/10.1590/S1516-35982010001300020
  49. Lee, M.A., Davis, A.P., Chagunda, M.G.G., & Manning, P. (2017). Forage quality declines with rising temperatures , with implications for livestock production and methane emissions. Biogeosciences, 14:1403-1417. doi:10.5194/bg-14-1403-2017. DOI: https://doi.org/10.5194/bg-14-1403-2017
  50. Linn, J.G., & Martin, N.P. (1989). Forage quality tests and interpretation, AGFO-2637. University of Minnesota Extension Service, Minneapolis.
  51. Macdonald, K.A., Penno, J.W., Lancaster, J.A.S., & Roche, J.R. (2008). Effect of Stocking Rate on Pasture Production , Milk Production , and Reproduction of Dairy Cows in Pasture-Based Systems. Journal of Dairy Science, 91:2151-2163. doi:10.3168/jds.2007-0630. DOI: https://doi.org/10.3168/jds.2007-0630
  52. McDermott, J.J., Staal, S.J., Freeman, H.A., Herrero, M., & Van de Steeg, J.A. (2010). Sustaining intensification of smallholder livestock systems in the tropics. Livestock Science, 130(1), 95–109. doi:https://doi.org/10.1016/j.livsci.2010.02.014. DOI: https://doi.org/10.1016/j.livsci.2010.02.014
  53. Meister, N.C., Cardoso, S., Alari, F.O., Lima, N., Lemos, S., Toyoko, R., Ruggieri, A.C. (2021). Effect of pasture management on enteric methane emissions from goats. Trop Anim Health Prod, 53:94. doi:https://doi.org/10.1007/s11250-020-02507-z. DOI: https://doi.org/10.1007/s11250-020-02507-z
  54. Nicolás, L., Cevallos, M., Luis, J., García, R., Isael, B., Suárez, A., Toulkeridis, T. (2018). A NDVI Analysis Contrasting Different Spectrum Data Methodologies Applied in Pasture Crops Previous Grazing – A Case Study from Ecuador. IEEE, 126–135. doi:10.1109/ICEDEG.2018.8372375. DOI: https://doi.org/10.1109/ICEDEG.2018.8372375
  55. NRC. (1962). National Research Council. Basic Problems and Techniques in Range Research. The National Academies Press. Washington, D.C.: National Academies Press. doi:10.17226/20268.
  56. NRC. (2001). Requirements of dairy cattle Seventh Revised Edition. National Academy Press, Washington D.C.
  57. Ogoukayode, E., Olomonchİ, A., Garİpoğlu, A. V., Ocak, N., & Kamalak, A. (2021). Nutritional values and in vitro fermentation parameters of some fodder species found in two rangeland areas in the Republic of Benin. Turkish Journal of Veterinary and Animal Sciences. doi:10.3906/vet-2101-69.
  58. Onyeonagu, C.C., & Asiegbu, J.E. (2013). Harvest frequency effect on plant height , grass tiller production , plant cover and percentage dry matter production of some forage grasses and legumes in the derived savannah , Nigeria. African Journal of Agricultural Research, 8,608-618. doi:10.5897/AJAR11.2461.
  59. Oppong, S.K., Kemp, P.D., & Douglas, G.B. (2008). Browse Shrubs and Trees as Fodder for Ruminants : A Review on Management and Quality. Journal of Science and Technology, 28, 65–75. DOI: https://doi.org/10.4314/just.v28i1.33079
  60. Parsons, A.J., Edwards, G.R., Newton, P.C.D., Chapman, D.F., Caradus, J.R., Rasmussen, S., & Rowarth, J.S. (2011). Grass and Forage Science Past lessons and future prospects : plant breeding for yield and persistence in cool-temperate pastures. Grass and Forage Science, 66:153-172. doi:10.1111/j.1365-2494.2011.00785.x. DOI: https://doi.org/10.1111/j.1365-2494.2011.00785.x
  61. Patiño-Pardo, R.M., Gómez-Salcedo, R., & Navarro-Mejía, O.A. (2018). Nutritional quality of Mombasa and Tanzania (Megathyrsus maximus , Jacq.) managed at different frequencies and cutting heights in Sucre , Colombia. Rev. CES Med. Zootec, 13,17-30. DOI: https://doi.org/10.21615/cesmvz.13.1.2
  62. Peyraud, J.L., & Delagarde, R. (2013). Managing variations in dairy cow nutrient supply under grazing. Animal, 7:57-67. doi:10.1017/S1751731111002394. DOI: https://doi.org/10.1017/S1751731111002394
  63. Pinheiro, J.C., & Bates, D.M. (1996). Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 6(3), 289–296. doi:10.1007/BF00140873. DOI: https://doi.org/10.1007/BF00140873
  64. Rao, I.M. (2001). Adapting tropical forages to low-fertility soils. Proceedings of the Xix International Grassland Congress: Grassland Ecosystems: An Outlook into the 21st Century, 247–254.
  65. Sauvant, D., & Nozière, P. (2016). Quantification of the main digestive processes in ruminants: The equations involved in the renewed energy and protein feed evaluation systems. Animal, 10:755-770. doi:10.1017/S1751731115002670. DOI: https://doi.org/10.1017/S1751731115002670
  66. Sbrissia, A. F., Carneiro, S., Augusto, C., Carvalho, B., & Pedreira, G.S. (2001). Tiller Size/Population Density Compensation in Grazed Coastcross Bermudagrass Swards. Scientia Agricola, 58:655-665. DOI: https://doi.org/10.1590/S0103-90162001000400002
  67. Schons, R.M.T., Laca, E.A., Savian, J.V., Mezzalira, J.C., Schneider, E.A.N., Caetano, L.A.M., Carvalho, P.C.d.F. (2021). ‘Rotatinuous’ stocking: An innovation in grazing management to foster both herbage and animal production. Livestock Science, 245,104406. doi:10.1016/j.livsci.2021.104406. DOI: https://doi.org/10.1016/j.livsci.2021.104406
  68. Souza, W. De, Arthur, P., Nunes, D.A., Santiago, R., Robinson, T., Menezes, G., Genro, M. (2019). Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems : Trade-offs between animal performance and environmental impacts, 213:968-975. doi:10.1016/j.jclepro.2018.12.245. DOI: https://doi.org/10.1016/j.jclepro.2018.12.245
  69. Stromberg, C.A. (2011). Evolution of Grasses and Grassland Ecosystems. Annu. Rev. Earth Planet. Sci., 39:517–44. doi:10.1146/annurev-earth-040809-152402. DOI: https://doi.org/10.1146/annurev-earth-040809-152402
  70. Szymczak, L.S., Moraes, A.D., Fonseca, L., Paulo, C., Faccio, D., & Alda, L. (2021). Low-Intensity, High-Frequency Grazing Strategy Increases Herbage Production and Beef Cattle Performance on Sorghum Pastures. Animals, 12,13. DOI: https://doi.org/10.3390/ani12010013
  71. Thornton, P.K., & Gerber, P.J. (2010). Climate change and the growth of the livestock sector in developing countries. Mitigation and Adaptation Strategies for Global Change, 15:169-184. doi:10.1007/s11027-009-9210-9. DOI: https://doi.org/10.1007/s11027-009-9210-9
  72. Torres, B., Heredia-r, M., Toulkeridis, T., & Estupiñ, K. (2022). Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. DOI: https://doi.org/10.3390/su141710738
  73. Undersander, D, & Moore, J.E. (2002). Relative forage quality. Focus on Forage, 12,1-3. Retrieved from http://www.foragelab.com/Media/Relative_Forage_Quality.pdf.
  74. Undersander, Dan. (2015). Relative Forage Quality : An Alternative to Relative Feed Value and Quality Index. Proceedings 13th Annual Florida Ruminant Nutrition Symposium, pp 16-32.
  75. Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  76. Verdecia, D.M., Ramírez, J.L., Pascual, L.I., & López, Y. (2008). Rendimiento y componentes del valor nutritivo del Panicum maximum cv. Tanzania. Revista Electrónica de Veterinaria, 5,1-9.
  77. Viera-torres, M., Sinde-gonz, I., Gil-docampo, M., Bravo-Yaandum, V., & Toulkeridis, T. (2020). Generating the Baseline in the Early Detection of Bud Rot and Red Ring Disease in Oil Palms by Geospatial Technologies. Remote Sensing, 12, 3229. DOI: https://doi.org/10.3390/rs12193229
  78. Villacís, M.G.M., Ruiz, D.A.C., Powney, E.P.K., Guzmán, J.A.M., & Toulkeridis, T. (2020). Index Relationship of Vegetation with the Development of a Quinoa Crop (Chenopodium quinoa)in its First Phenological Stages in Central Ecuador Based on GIS Techniques. In 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 191–200). doi:10.1109/ICEDEG48599.2020.9096690. DOI: https://doi.org/10.1109/ICEDEG48599.2020.9096690
  79. Volden, H. (2011). Feed calculations in NorFor. In NorFor-The Nordic feed evaluation system. Wageningen Academic Publishers, Wageningen. doi:10.3920/978-90-8686-718-9. DOI: https://doi.org/10.3920/978-90-8686-718-9
  80. Waghorn, G.C., & Clark, D.A. (2011). Feeding value of pastures for ruminants. New Zealand Veterinary Journal, 52,320-331. doi:10.1080/00480169.2004.36448. DOI: https://doi.org/10.1080/00480169.2004.36448
  81. Winkler, J. (2000). Effects of Facilities on Dairy Cattle Performance. Tri-State Dairy Nutrition Conference, 1–192.
  82. Zinn, R. A., & Ware, R.A. (2007). Forage quality : digestive limitations and their relationships to performance of beef and dairy cattle. Annual Southwest Nutrition & Management Conference, 49–54.