Vol. 119 No. 2 (2025)
Research Papers

Morphological seed diversity and viability of Moroccan cowpea landraces (Vigna unguiculata l. Walp.) conserved by farmers

Zineb Moudni
TEDAEEP Team Research, Abdelmalek Essaâdi University – (UAE-FPL), Polydisciplinary Faculty of Larache, Larache, Morocco
Younes Hmimsa
TEDAEEP Team Research, Abdelmalek Essaâdi University – (UAE-FPL), Polydisciplinary Faculty of Larache, Larache, Morocco
Imane El Hassani
TEDAEEP Team Research, Abdelmalek Essaâdi University – (UAE-FPL), Polydisciplinary Faculty of Larache, Larache, Morocco
Nouhaila Dihaz
TEDAEEP Team Research, Abdelmalek Essaâdi University – (UAE-FPL), Polydisciplinary Faculty of Larache, Larache, Morocco
Widad Benziane
TEDAEEP Team Research, Abdelmalek Essaâdi University – (UAE-FPL), Polydisciplinary Faculty of Larache, Larache, Morocco
Penelope J. Bebeli
Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos, Athens, Greece
Salama El Fatehi
TEDAEEP Team Research, Abdelmalek Essaâdi University – (UAE-FPL), Polydisciplinary Faculty of Larache, Larache, Morocco

Published 2025-12-30

Keywords

  • Vigna unguiculata (L.) Walp.,
  • landraces,
  • variability,
  • morphological trait,
  • germination performance

How to Cite

Moudni, Z., Hmimsa, Y., El Hassani, I., Dihaz, N., Benziane, W., Bebeli, P. J., & El Fatehi, S. (2025). Morphological seed diversity and viability of Moroccan cowpea landraces (Vigna unguiculata l. Walp.) conserved by farmers. Journal of Agriculture and Environment for International Development (JAEID), 119(2), 163–184. https://doi.org/10.36253/jaeid-17854

Abstract

Cowpea (Vigna unguiculata (L.) Walp.) is an important food crop, renowned for its nutritional quality and resilience to harsh climatic conditions. In Morocco, this legume remains a marginal crop, which threatens the conservation of its local genetic resources. In this context, the present study aimed to evaluate germination capacity, assess morphological diversity, and examine patterns of variation and correlations between these traits in nineteen traditional cowpea populations collected across Morocco, using seven germination parameters and twelve morphological traits. Results revealed significant variability within and between populations for both germination and seed morphological traits. Most populations exhibited high germination capacity and rapid germination rates, indicating an almost complete absence of dormancy. Seed morphological traits showed substantial intra- and inter-population variability, reflecting high phenotypic richness. Principal component analysis (PCA) identified four distinct population clusters, suggesting that the spatial structuring results from a combined effect of differentiation in morphological and germination traits, further influenced by geographical connectivity. Overall, these findings highlight the remarkable richness of Morocco’s local cowpea genetic resources, offering valuable insights for conservation and breeding programs to support food security and sustainable agriculture.

References

  1. Abdou, S. (2022). Evaluation of cowpea (Vigna unguiculata (L.) Walp.) lines for high grain and fodder yields in the dry season of Niger Republic. Heliyon, 8(3), e09147. doi:10.1016/j.heliyon.2022.e09147
  2. Achtak, H., Ater, M., Oukabli, A., Santoni, S., Kjellberg, F., & Khadari, B. (2010). Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: The case of fig (Ficus carica L.) in Morocco. BMC Plant Biology, 10, 28. doi:10.1186/1471-2229-10-28
  3. Afonso, P., Castro, I., & Carvalho, M. (2025). Salt-resilient cowpeas: Early identification through growth parameters and gene expression at germination stage. International Journal of Molecular Sciences, 26 (5), 1892. doi:10.3390/ijms26051892
  4. Aliyu, O.M., Abioye, T.A., Abdulkareem, Y.F., & Ibrahim, A. (2023). Understanding the nexus of genotype, root nodulation, and soil nutrients for shoot biomass production and seed yield in cowpea (Vigna unguiculata L. Walp). Journal of Soil Science and Plant Nutrition, 23, 2566–2584. doi:10.1007/s42729-023-01213-7
  5. Al-Saady, N. A., Nadaf, S. K., Al-Lawati, A. H., & Al-Hinai, S. A. (2018). Germplasm collection and seed diversity of cowpea (Vigna unguiculata (L.) Walp.). Asian Journal of Agriculture and Food Sciences, 6(4), 129–139. doi:10.24203/ajafs.v6i4.5349
  6. Amenga, J. A., Donkor, E. F., Atakora, K., & Novor, S. (2025). Agronomic evaluation of cowpea (Vigna unguiculata L.) lines for varietal development in the Berekum West Municipality of Ghana. Ecological Genetics and Genomics, 34, 100332. doi:10.1016/j.egg.2025.100332
  7. Basseddik, A., & Tellah, S. (2021). Ethnobotanical investigation and morphobiometric characterization of different cowpea seeds (Vigna unguiculata subsp. unguiculata (L.) Walp) in the Hoggar region (Algerian Sahara): Acquisition and future investment project for food security in Algeria. Algerian Journal of Biosciences, 2(2), 46. doi:10.57056/ajb.v2i2.46
  8. Belete, K. A., & Mulugeta, T. A. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383. doi:10.1016/j.jafr.2022.100383
  9. Bellakhdar, J. (1997). Contribution à l’étude de la pharmacopée traditionnelle au Maroc : La situation actuelle, les produits, les sources du savoir. Enquête ethnopharmacologique de terrain réalisée de 1969 à 1992 (Tome I) [Doctoral dissertation, Université de Metz, Centre des sciences de l’environnement].
  10. Bhatt, A., Chen, X., Souza-Filho, P. R. de M., Chauhan, H. K., & Yu, D. (2025). Effects of the phylogeny and seed traits on germination of Polygonaceae species from subtropical forest, Southeast China. Botany, 103(1), 1–10. doi:10.1139/cjb-2024-0059
  11. Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O., & Fatokun, C. (2018). Cowpea (Vigna unguiculata): Genetics, genomics, and breeding. Plant Breeding, 138(4), 415–424. doi:10.1111/pbr.12589
  12. Bryssine, P. (1962). Comportement des variétés de Vigna sinensis Savi et possibilités de sa culture au Maroc. Al Awamia, 3, 1–56.
  13. Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., Gómez, L., & Oñate-Sánchez, L. (2020). An updated overview on the regulation of seed germination. Plants, 9(6), 703. doi:10.3390/plants9060703
  14. Carvalho, M., Bebeli, P., Pereira, G., Castro, I., Egea-Gilabert, C., Matos, M., Lazaridi, E., Duarte, I., Lino-Neto, T., Ntatsi, G., Rodrigues, M., Savvas, D., Rosa, E., & Carnide, V. (2017a). European cowpea landraces for a more sustainable agriculture system and novel foods. Journal of the Science of Food and Agriculture, 97(13), 4399–4407. doi:10.1002/jsfa.8378
  15. Carvalho, M., Carnide, V., Sobreira, C., Castro, I., Coutinho, J., Barros, A., & Rosa, E. (2022). Cowpea immature pods and grains evaluation: An opportunity for different food sources. Plants, 11(16), 2079. doi:10.3390/plants11162079
  16. Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247, 107–115. doi:10.1016/j.scienta.2018.11.082
  17. Carvalho, M., Muñoz-Amatriaín, M., Castro, I., Lino-Neto, T., Matos, M., Egea-Cortines, M., Rosa, E., Close, T., & Carnide, V. (2017b). Genetic diversity and structure of Iberian Peninsula cowpeas compared to worldwide accessions using high-density SNP markers. BMC Genomics, 18, 891. doi:10.1186/s12864-017-4295-0
  18. Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150–164. doi:10.1016/j.scienta.2013.07.044
  19. Chmarkhi, A., El Fatehi, S., El Khatib, K., & Hmimsa, Y. (2024). Contribution of agromorphological and qualitative traits to the study of the diversity of the caprifig (Ficus carica L.) in traditional agroecosystems in northern Morocco. Journal of the Saudi Society of Agricultural Sciences. doi:10.1016/j.jssas.2024.11.001
  20. Cobelli, O., Teixidor-Toneu, I., El Fatehi, S., Hmimsa, Y., Leclerc, C., & Labeyrie, V. (2025). The impact of agricultural policies on agrobiodiversity management in a pre-Rif farming system in Morocco: what implications for resilience? Agriculture and Human Values. doi:10.1007/s10460-025-10724-1
  21. Dagnon, Y. D., Palanga, K. K., Bammite, D., Bodian, A., Akabassi, G. C., Foncéka, D., & Tozo, K. (2022). Genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp.) accessions from Togo using SSR markers. PLOS ONE, 17(10), e0252362. doi:10.1371/journal.pone.0252362
  22. Demongeot, M., Hmimsa, Y., McKey, D., Aumeeruddy-Thomas, Y., & Renard, D. (2024). Social strategies to access land influence crop diversity in northwestern Morocco. People and Nature, 6, 687–702. doi:10.1002/pan3.10617
  23. Doumbia, I. Z., Akromah, R., & Asibuo, J. Y. (2013). Comparative study of cowpea germplasms diversity from Ghana and Mali using morphological characteristics. Journal of Plant Breeding and Genetics, 1(3), 139–147.
  24. Doumbia, K., Coulibaly, Y. N., Djè Bi, I. R., Koffi, Y. R., Tiote, L., & Koffi Kouamé, K. (2024). Morphological traits variation of cowpea (Vigna unguiculata L. Walp) grown in Côte d’Ivoire. African Journal of Biotechnology, 23(1), 17–27. doi:10.5897/AJB2023.17623
  25. Edeh, H. O., & Igberi, C. O. (2012). Assessment of vegetable cowpea production among smallholder farmers in Ebonyi State, Nigeria. ARPN Journal of Agricultural and Biological Science, 7(3), 215–222.
  26. Egbadzor, K. F., Dadoza, M., Danquah, E. Y., Yeboah, M., Offei, S. K., & Ofori, K. (2013). Genetic control of seed size in cowpea (Vigna unguiculata (L.) Walp). International Journal of Agriculture Sciences, 5(2), 367–371. doi:10.9735/0975-3710.5.2.367-371
  27. El Fatehi, S., Béna, G., Filali-Maltouf, A., & Ater, M. (2014). Variation in yield components, phenology, and morphological traits among Moroccan bitter vetch landraces Vicia ervilia (L.) Willd.. African Journal of Agricultural Research, 9 (23), 1801–1809. doi:10.5897/AJAR2013.8012
  28. El Fatehi, S., & Ater, M. (2017). L’orobe (Vicia ervilia L. Willd.) au Maroc : Histoire, nomenclature et usage d’une culture marginalisée. Revue d’ethnoécologie, (Supplément 1). doi:10.4000/ethnoecologie.3128
  29. El Fatehi, S., Hmimsa, Y., & Ater, M. (2021). Assessment of agromorphological diversity of chickling-vetch (Lathyrus cicera L.) landraces in the traditional agroecosystems of Morocco. Australian Journal of Crop Science, 15(10), 1289–1297. doi:10.21475/ajcs.21.15.10.p3220
  30. Faye, A., Obour, A. K., Akplo, T. M., Stewart, Z. P., Min, D., Prasad, P. V., & Assefa, Y. (2024). Dual-purpose cowpea grain and fodder yield response to variety, nitrogen–phosphorus–potassium fertilizer, and environment. Agrosystems, Geosciences & Environment, 7 (1), e20459. doi:10.1002/agg2.20459
  31. Fountain, D. W., & Outred, H. A. (1990). Seed development in Phaseolus vulgaris L. cv Seminole: II. Precocious germination in late maturation. Plant Physiology, 93 (3), 1089–1093. doi:10.1104/pp.93.3.1089
  32. Genze, N., Bharti, R., Grieb, M., Schultheiss, S. J., & Grimm, D. G. (2020). Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16, 157. doi:10.1186/s13007-020-00699-x
  33. Gerrano, A. S., Jansen van Rensburg, W. S., Venter, S. L., Shargie, N. G., Amelework, B. A., Shimelis, H. A., & Labuschagne, M. T. (2019). Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 69 (2), 155–166. doi:10.1080/09064710.2018.1520290
  34. Gerrano, A. S., Thungo, Z. G., & Mavengahama, S. (2022). Phenotypic description of elite cowpea (Vigna unguiculata L. Walp) genotypes grown in drought-prone environments using agronomic traits. Heliyon, 8(2), e08855. doi:10.1016/j.heliyon.2022.e08855
  35. Ghalmi, N., Malice, M., Jacquemin, J.-M., Ounane, S.-M., Mekliche, L., & Baudoin, J.-P. (2010). Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genetic Resources and Crop Evolution, 57(3), 371–386. doi:10.1007/s10722-009-9476-5
  36. Gomes, A. M. F., Draper, D., Nhantumbo, N., Massinga, R., Ramalho, J. C., Marques, I., & Ribeiro-Barros, A. I. (2021). Diversity of cowpea [Vigna unguiculata (L.) Walp] landraces in Mozambique: New opportunities for crop improvement and future breeding programs. Agronomy, 11(5), 991. doi:10.3390/agronomy11050991
  37. Gumede, M. T., Gerrano, A. S., Amelework, A. B., & Modi, A. T. (2022). Analysis of genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp) genotypes using single nucleotide polymorphism markers. Plants, 11(24), 3480. doi:10.3390/plants11243480
  38. Hmimsa, Y., & Ater, M. (2008). Agrodiversity in the traditional agrosystems of the Rif mountains (North of Morocco). Biodiversity: Journal of Life on Earth, 9 (1–2), 78–81. doi:10.1080/14888386.2008.9712890
  39. Hmimsa, Y., Ramet, A., Dubuisson, C., El Fatehi, S., Hossaert-McKey, M., Kahi, H., Munch, J., Profitt, M., Salpeteur, M., & Aumeeruddy-Thomas, Y. (2024). Pollination of the Mediterranean fig tree, Ficus carica L.: Caprification practices and social networks of exchange of caprifigs among Jbala farmers in Northern Morocco. Human Ecology, 52, 289–302. doi:10.1007/s10745-024-00493-6
  40. Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50 (3), 346–363. doi:10.1002/bimj.200810425
  41. IBPGR. (1983). Descriptors for Cowpea. Rome : IBPGR Secretariat.
  42. Kassout, J., Hmimsa, Y., El Fatehi, S., El Ouahrani, A., Kadaoui, K., Chakkour, S., Ariza-Mateos, D., Palacios-Rodríguez, G., Navarro-Cerrillo, R., & Ater, M. (2022). Image analysis of Moroccan carob seeds (Ceratonia siliqua L.) revealed substantial intraspecific variations depending on climate and geographic origin. Ecological Processes, 11, 34. doi:10.1186/s13717-022-00378-w
  43. Kende, Z., Piroska, P., Szemők, G. E., Khaeim, H., Sghaier, A. H., Gyuricza, C., & Tarnawa, Á. (2024). Optimizing water, temperature, and density conditions for in vitro pea (Pisum sativum L.) germination. Plants, 13 (19), 2776. doi:10.3390/plants13192776
  44. Lamichhane, J. R., Debaeke, P., Steinberg, C., You, M. P., Barbetti, M. J., & Aubertot, J.-N. (2018). Abiotic and biotic factors affecting crop seed germination and seedling emergence: A conceptual framework. Plant and Soil, 432 (1–2), 1–28. doi:10.1007/s11104-018-3780-9
  45. Lazaridi, E., & Bebeli, P. J. (2023). Cowpea constraints and breeding in Europe. Plants, 12(6), 1339. doi:10.3390/plants12061339
  46. Lazaridi, E., Kapazoglou, A., Gerakari, M., Kleftogianni, K., Passa, K., Sarri, E., Papasotiropoulos, V., Tani, E., & Bebeli, P. J. (2024). Crop landraces and indigenous varieties: A valuable source of genes for plant breeding. Plants, 13 (6), 758. doi:10.3390/plants13060758
  47. Lazaridi, E., Ntatsi, G., Savvas, D., & Bebeli, P. J. (2017). Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genetic Resources and Crop Evolution, 64 (7), 1381–1392. doi:10.1007/s10722-016-0452-6
  48. Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25 (1), 1–18. doi:10.18637/jss.v025.i01
  49. Lo, S., Muñoz-Amatriaín, M., Boukar, O., Herniter, I., Cisse, N., Guo, Y.-N., Roberts, P. A., Xu, S., Fatokun, C., & Close, T. J. (2018). Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 8 (1), 6261. doi:10.1038/s41598-018-24349-4
  50. Lozano-Isla, F., Benites-Alfaro, O. E., & Pompelli, M. F. (2019). GerminaR: An R package for germination analysis with the interactive web application “GerminaQuant for R”. Ecological Research, 34 (2), 339–346. doi:10.1111/1440-1703.1275
  51. Makhaye, G., Aremu, A. O., Gerrano, A. S., Tesfay, S., Du Plooy, C. P., & Amoo, S. O. (2021). Biopriming with seaweed extract and microbial-based commercial biostimulants influences seed germination of five Abelmoschus esculentus genotypes. Plants, 10 (7), 1327. doi:10.3390/plants10071327
  52. Mavi, K., Demir, I., & Matthews, S. (2010). Mean germination time estimates the relative emergence of seed lots of three cucurbit crops under stress conditions. Seed Science and Technology, 38(1), 14–25. doi:10.15258/sst.2010.38.1.02
  53. Mendiburu, D. F., & Yaseen, M. (2020). Agricolae: Statistical procedures for agricultural research (R package version 1.4.0) [Computer software]. Retrieved from https://cran.rproject.org/package=agricolae
  54. Mis, S., Ermis, S., Powell, A. A., & Demis, I. (2022). Radicle emergence (RE) test identifies differences in normal germination percentages (NG) of watermelon, lettuce and carrot seed lots. Seed Science and Technology, 50 (2), 257–267. doi:10.15258/sst.2022.50.2.09
  55. Mkhonta, K. A. K., Shimelis, H., Abady, S., & Ngidi, A. (2025). Agronomic performance of newly developed elite cowpea mutant lines in Eswatini. Agriculture, 15 (15), 1631. doi:10.3390/agriculture15151631
  56. Mndzebele, B., Ncube, B., Nyathi, M., Kanu, S. A., Fessehazion, M., Mabhaudhi, T., Amoo, S., & Modi, A. T. (2020). Nitrogen fixation and nutritional yield of a cowpea–amaranth intercrop. Agronomy, 10 (4), 565. doi:10.3390/agronomy10040565
  57. Molosiwa, O. O., Gwafila, C., Makore, J., & Chite, S. M. (2016). Phenotypic variation in cowpea (Vigna unguiculata [L.] Walp.) germplasm collection from Botswana. International Journal of Biodiversity and Conservation, 8, 153–163. doi:10.5897/IJBC2016.0949
  58. Nkoana, L., Tsilo, T. J., & Shayanowako, T. A. (2019). Morphological diversity and genetic structure of cowpea landraces (Vigna unguiculata L. Walp.) in South Africa. South African Journal of Plant and Soil, 36 (5), 380–390. doi:10.1080/02571862.2019.1596963
  59. Ongom, P. O., Fatokun, C., Togola, A., Dieng, I., Salvo, S., Gardunia, B., Baba Mohammed, S., & Boukar, O. (2024). Genetic progress in cowpea [Vigna unguiculata (L.) Walp.] stemming from breeding modernization efforts at the International Institute of Tropical Agriculture. The Plant Genome, 17 (2), e20462. doi:10.1002/tpg2.20462
  60. Orobiyi, A., Loko, L. Y., Sanoussi, F., Agré, A. P., Korie, N., Gbaguidi, A., Adjatin, A., Agbangla, C., & Dansi, A. (2018). Agro-morphological characterization of chili pepper landraces (Capsicum annuum L.) cultivated in Northern Benin. Genetic Resources and Crop Evolution, 65, 555–569. doi:10.1007/s10722-017-0553-x
  61. Osipitan, O. A., Fields, J. S., Lo, S., & Cuvaca, I. (2021). Production systems and prospects of cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy, 11(11), 2312. doi:10.3390/agronomy11112312
  62. Padulosi, S., & Ng, N. Q. (1997). Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In B. B. Singh, D. R. Mohan Raj, K. E. Dashiell & L. E. N. Jackai (Eds.), Advances in cowpea research (pp.1–12). Ibadan, Nigeria: Japan International Research Center for Agricultural Sciences and International Institute of Tropical Agriculture.
  63. Paiva, E. P. de, Sá, F. V. da S., Torres, S. B., Brito, M. E. B., Moreira, R. C. L., & Silva, L. de A. (2018). Germination and tolerance of cowpea (Vigna unguiculata) cultivars to water stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(6), 407–411. doi:10.1590/1807-1929/agriambi.v22n6p407-411
  64. R Core Team. (2023). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
  65. Ravelombola, W. S., Shi, A., Weng, Y., Clark, J., Motes, D., Chen, P., & Srivastava, V. (2017). Evaluation of salt tolerance at the germination stage in cowpea (Vigna unguiculata (L.) Walp.). HortScience, 52 (9), 1168–1176. doi:10.21273/HORTSCI12195-17
  66. Sissoko, M., Theriault, V., & Smale, M. (2022). Beyond grain: The potential of cowpea in local markets of Mali. Journal of Agribusiness in Developing and Emerging Economies, 12 (3), 1–36. doi:10.1108/JADEE-02-2022-0035
  67. Sylla, A., Yila, J. O., Diallo, S., & Traoré, S. (2023). Importance of the social structures in cowpea varietal demands for women and men farmers in Ségou Region, Mali. Sustainability, 15(4), 3433. doi:10.3390/su15043433
  68. Toujgani, I., El Fatehi, S., Ater, M., & Hmimsa, Y. (2022). Phenotypic polymorphism of leaves among the populations of Moroccan chestnut (Castanea sativa Mill.). Australian Journal of Crop Science, 16 (10), 1170–1176. doi:10.21475/ajcs.22.16.10.p3649
  69. Vleugels, T., Van den Broeck, J., & Knapen, G. (2011). Seed vigor and its impact on germination speed and field emergence. Seed Science Research, 21 (2), 127–136. doi:10.1017/S096025851100004X
  70. Weston, L. A., Zimdahl, R. L., & Davis, A. S. (2000). Seed germination, emergence, and plant vigor in relation to stress tolerance. Agronomy Journal, 92 (3), 681–688. doi:10.2134/agronj2000.923681x
  71. Wickham, H., François, R., Henry, L., & Müller, K. (2023). dplyr: A grammar of data manipulation (R package version 1.1.0). Retrieved from https://cran.r-project.org/package=dplyr
  72. Widajati, E., Syukur, M., Diaguna, R., Permatasari, O. S. I., Ritonga, A. W., Sahid, Z. D., Pratiwi, G. R., & Hatta, A. N. N. L. (2023). Morpho-physiological seed diversity and viability of Indonesian cowpea (Vigna unguiculata). Biodiversitas, 24 (10), 5319–5327. doi:10.13057/biodiv/d241013
  73. Wu, X., Michael, V. N., López-Hernández, F., Cortés, A. J., Morris, J. B., Wang, M., Tallury, S., Miller II, M. C., & Blair, M. W. (2024). Genetic diversity and genome-wide association in cowpeas (Vigna unguiculata L. Walp). Agronomy, 14 (5), 961. doi:10.3390/agronomy14050961
  74. Xue, X., Du, S., Jiao, F., Xi, M., Wang, A., Xu, H., Jiao, Q., Zhang, X., Jiang, H., Chen, J., & Wang, M. (2021). The regulatory network behind maize seed germination: Effects of temperature, water, phytohormones, and nutrients. The Crop Journal, 9 (4), 718–724. doi:10.1016/j.cj.2021.03.006