Morphological seed diversity and viability of Moroccan cowpea landraces (Vigna unguiculata l. Walp.) conserved by farmers
Published 2025-12-30
Keywords
- Vigna unguiculata (L.) Walp.,
- landraces,
- variability,
- morphological trait,
- germination performance
How to Cite
Copyright (c) 2025 Zineb Moudni, Younes Hmimsa, Imane El Hassani, Nouhaila Dihaz, Widad Benziane, Penelope J. Bebeli, Salama El Fatehi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is an important food crop, renowned for its nutritional quality and resilience to harsh climatic conditions. In Morocco, this legume remains a marginal crop, which threatens the conservation of its local genetic resources. In this context, the present study aimed to evaluate germination capacity, assess morphological diversity, and examine patterns of variation and correlations between these traits in nineteen traditional cowpea populations collected across Morocco, using seven germination parameters and twelve morphological traits. Results revealed significant variability within and between populations for both germination and seed morphological traits. Most populations exhibited high germination capacity and rapid germination rates, indicating an almost complete absence of dormancy. Seed morphological traits showed substantial intra- and inter-population variability, reflecting high phenotypic richness. Principal component analysis (PCA) identified four distinct population clusters, suggesting that the spatial structuring results from a combined effect of differentiation in morphological and germination traits, further influenced by geographical connectivity. Overall, these findings highlight the remarkable richness of Morocco’s local cowpea genetic resources, offering valuable insights for conservation and breeding programs to support food security and sustainable agriculture.
References
- Abdou, S. (2022). Evaluation of cowpea (Vigna unguiculata (L.) Walp.) lines for high grain and fodder yields in the dry season of Niger Republic. Heliyon, 8(3), e09147. doi:10.1016/j.heliyon.2022.e09147
- Achtak, H., Ater, M., Oukabli, A., Santoni, S., Kjellberg, F., & Khadari, B. (2010). Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: The case of fig (Ficus carica L.) in Morocco. BMC Plant Biology, 10, 28. doi:10.1186/1471-2229-10-28
- Afonso, P., Castro, I., & Carvalho, M. (2025). Salt-resilient cowpeas: Early identification through growth parameters and gene expression at germination stage. International Journal of Molecular Sciences, 26 (5), 1892. doi:10.3390/ijms26051892
- Aliyu, O.M., Abioye, T.A., Abdulkareem, Y.F., & Ibrahim, A. (2023). Understanding the nexus of genotype, root nodulation, and soil nutrients for shoot biomass production and seed yield in cowpea (Vigna unguiculata L. Walp). Journal of Soil Science and Plant Nutrition, 23, 2566–2584. doi:10.1007/s42729-023-01213-7
- Al-Saady, N. A., Nadaf, S. K., Al-Lawati, A. H., & Al-Hinai, S. A. (2018). Germplasm collection and seed diversity of cowpea (Vigna unguiculata (L.) Walp.). Asian Journal of Agriculture and Food Sciences, 6(4), 129–139. doi:10.24203/ajafs.v6i4.5349
- Amenga, J. A., Donkor, E. F., Atakora, K., & Novor, S. (2025). Agronomic evaluation of cowpea (Vigna unguiculata L.) lines for varietal development in the Berekum West Municipality of Ghana. Ecological Genetics and Genomics, 34, 100332. doi:10.1016/j.egg.2025.100332
- Basseddik, A., & Tellah, S. (2021). Ethnobotanical investigation and morphobiometric characterization of different cowpea seeds (Vigna unguiculata subsp. unguiculata (L.) Walp) in the Hoggar region (Algerian Sahara): Acquisition and future investment project for food security in Algeria. Algerian Journal of Biosciences, 2(2), 46. doi:10.57056/ajb.v2i2.46
- Belete, K. A., & Mulugeta, T. A. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383. doi:10.1016/j.jafr.2022.100383
- Bellakhdar, J. (1997). Contribution à l’étude de la pharmacopée traditionnelle au Maroc : La situation actuelle, les produits, les sources du savoir. Enquête ethnopharmacologique de terrain réalisée de 1969 à 1992 (Tome I) [Doctoral dissertation, Université de Metz, Centre des sciences de l’environnement].
- Bhatt, A., Chen, X., Souza-Filho, P. R. de M., Chauhan, H. K., & Yu, D. (2025). Effects of the phylogeny and seed traits on germination of Polygonaceae species from subtropical forest, Southeast China. Botany, 103(1), 1–10. doi:10.1139/cjb-2024-0059
- Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O., & Fatokun, C. (2018). Cowpea (Vigna unguiculata): Genetics, genomics, and breeding. Plant Breeding, 138(4), 415–424. doi:10.1111/pbr.12589
- Bryssine, P. (1962). Comportement des variétés de Vigna sinensis Savi et possibilités de sa culture au Maroc. Al Awamia, 3, 1–56.
- Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., Gómez, L., & Oñate-Sánchez, L. (2020). An updated overview on the regulation of seed germination. Plants, 9(6), 703. doi:10.3390/plants9060703
- Carvalho, M., Bebeli, P., Pereira, G., Castro, I., Egea-Gilabert, C., Matos, M., Lazaridi, E., Duarte, I., Lino-Neto, T., Ntatsi, G., Rodrigues, M., Savvas, D., Rosa, E., & Carnide, V. (2017a). European cowpea landraces for a more sustainable agriculture system and novel foods. Journal of the Science of Food and Agriculture, 97(13), 4399–4407. doi:10.1002/jsfa.8378
- Carvalho, M., Carnide, V., Sobreira, C., Castro, I., Coutinho, J., Barros, A., & Rosa, E. (2022). Cowpea immature pods and grains evaluation: An opportunity for different food sources. Plants, 11(16), 2079. doi:10.3390/plants11162079
- Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247, 107–115. doi:10.1016/j.scienta.2018.11.082
- Carvalho, M., Muñoz-Amatriaín, M., Castro, I., Lino-Neto, T., Matos, M., Egea-Cortines, M., Rosa, E., Close, T., & Carnide, V. (2017b). Genetic diversity and structure of Iberian Peninsula cowpeas compared to worldwide accessions using high-density SNP markers. BMC Genomics, 18, 891. doi:10.1186/s12864-017-4295-0
- Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150–164. doi:10.1016/j.scienta.2013.07.044
- Chmarkhi, A., El Fatehi, S., El Khatib, K., & Hmimsa, Y. (2024). Contribution of agromorphological and qualitative traits to the study of the diversity of the caprifig (Ficus carica L.) in traditional agroecosystems in northern Morocco. Journal of the Saudi Society of Agricultural Sciences. doi:10.1016/j.jssas.2024.11.001
- Cobelli, O., Teixidor-Toneu, I., El Fatehi, S., Hmimsa, Y., Leclerc, C., & Labeyrie, V. (2025). The impact of agricultural policies on agrobiodiversity management in a pre-Rif farming system in Morocco: what implications for resilience? Agriculture and Human Values. doi:10.1007/s10460-025-10724-1
- Dagnon, Y. D., Palanga, K. K., Bammite, D., Bodian, A., Akabassi, G. C., Foncéka, D., & Tozo, K. (2022). Genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp.) accessions from Togo using SSR markers. PLOS ONE, 17(10), e0252362. doi:10.1371/journal.pone.0252362
- Demongeot, M., Hmimsa, Y., McKey, D., Aumeeruddy-Thomas, Y., & Renard, D. (2024). Social strategies to access land influence crop diversity in northwestern Morocco. People and Nature, 6, 687–702. doi:10.1002/pan3.10617
- Doumbia, I. Z., Akromah, R., & Asibuo, J. Y. (2013). Comparative study of cowpea germplasms diversity from Ghana and Mali using morphological characteristics. Journal of Plant Breeding and Genetics, 1(3), 139–147.
- Doumbia, K., Coulibaly, Y. N., Djè Bi, I. R., Koffi, Y. R., Tiote, L., & Koffi Kouamé, K. (2024). Morphological traits variation of cowpea (Vigna unguiculata L. Walp) grown in Côte d’Ivoire. African Journal of Biotechnology, 23(1), 17–27. doi:10.5897/AJB2023.17623
- Edeh, H. O., & Igberi, C. O. (2012). Assessment of vegetable cowpea production among smallholder farmers in Ebonyi State, Nigeria. ARPN Journal of Agricultural and Biological Science, 7(3), 215–222.
- Egbadzor, K. F., Dadoza, M., Danquah, E. Y., Yeboah, M., Offei, S. K., & Ofori, K. (2013). Genetic control of seed size in cowpea (Vigna unguiculata (L.) Walp). International Journal of Agriculture Sciences, 5(2), 367–371. doi:10.9735/0975-3710.5.2.367-371
- El Fatehi, S., Béna, G., Filali-Maltouf, A., & Ater, M. (2014). Variation in yield components, phenology, and morphological traits among Moroccan bitter vetch landraces Vicia ervilia (L.) Willd.. African Journal of Agricultural Research, 9 (23), 1801–1809. doi:10.5897/AJAR2013.8012
- El Fatehi, S., & Ater, M. (2017). L’orobe (Vicia ervilia L. Willd.) au Maroc : Histoire, nomenclature et usage d’une culture marginalisée. Revue d’ethnoécologie, (Supplément 1). doi:10.4000/ethnoecologie.3128
- El Fatehi, S., Hmimsa, Y., & Ater, M. (2021). Assessment of agromorphological diversity of chickling-vetch (Lathyrus cicera L.) landraces in the traditional agroecosystems of Morocco. Australian Journal of Crop Science, 15(10), 1289–1297. doi:10.21475/ajcs.21.15.10.p3220
- Faye, A., Obour, A. K., Akplo, T. M., Stewart, Z. P., Min, D., Prasad, P. V., & Assefa, Y. (2024). Dual-purpose cowpea grain and fodder yield response to variety, nitrogen–phosphorus–potassium fertilizer, and environment. Agrosystems, Geosciences & Environment, 7 (1), e20459. doi:10.1002/agg2.20459
- Fountain, D. W., & Outred, H. A. (1990). Seed development in Phaseolus vulgaris L. cv Seminole: II. Precocious germination in late maturation. Plant Physiology, 93 (3), 1089–1093. doi:10.1104/pp.93.3.1089
- Genze, N., Bharti, R., Grieb, M., Schultheiss, S. J., & Grimm, D. G. (2020). Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16, 157. doi:10.1186/s13007-020-00699-x
- Gerrano, A. S., Jansen van Rensburg, W. S., Venter, S. L., Shargie, N. G., Amelework, B. A., Shimelis, H. A., & Labuschagne, M. T. (2019). Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 69 (2), 155–166. doi:10.1080/09064710.2018.1520290
- Gerrano, A. S., Thungo, Z. G., & Mavengahama, S. (2022). Phenotypic description of elite cowpea (Vigna unguiculata L. Walp) genotypes grown in drought-prone environments using agronomic traits. Heliyon, 8(2), e08855. doi:10.1016/j.heliyon.2022.e08855
- Ghalmi, N., Malice, M., Jacquemin, J.-M., Ounane, S.-M., Mekliche, L., & Baudoin, J.-P. (2010). Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genetic Resources and Crop Evolution, 57(3), 371–386. doi:10.1007/s10722-009-9476-5
- Gomes, A. M. F., Draper, D., Nhantumbo, N., Massinga, R., Ramalho, J. C., Marques, I., & Ribeiro-Barros, A. I. (2021). Diversity of cowpea [Vigna unguiculata (L.) Walp] landraces in Mozambique: New opportunities for crop improvement and future breeding programs. Agronomy, 11(5), 991. doi:10.3390/agronomy11050991
- Gumede, M. T., Gerrano, A. S., Amelework, A. B., & Modi, A. T. (2022). Analysis of genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp) genotypes using single nucleotide polymorphism markers. Plants, 11(24), 3480. doi:10.3390/plants11243480
- Hmimsa, Y., & Ater, M. (2008). Agrodiversity in the traditional agrosystems of the Rif mountains (North of Morocco). Biodiversity: Journal of Life on Earth, 9 (1–2), 78–81. doi:10.1080/14888386.2008.9712890
- Hmimsa, Y., Ramet, A., Dubuisson, C., El Fatehi, S., Hossaert-McKey, M., Kahi, H., Munch, J., Profitt, M., Salpeteur, M., & Aumeeruddy-Thomas, Y. (2024). Pollination of the Mediterranean fig tree, Ficus carica L.: Caprification practices and social networks of exchange of caprifigs among Jbala farmers in Northern Morocco. Human Ecology, 52, 289–302. doi:10.1007/s10745-024-00493-6
- Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50 (3), 346–363. doi:10.1002/bimj.200810425
- IBPGR. (1983). Descriptors for Cowpea. Rome : IBPGR Secretariat.
- Kassout, J., Hmimsa, Y., El Fatehi, S., El Ouahrani, A., Kadaoui, K., Chakkour, S., Ariza-Mateos, D., Palacios-Rodríguez, G., Navarro-Cerrillo, R., & Ater, M. (2022). Image analysis of Moroccan carob seeds (Ceratonia siliqua L.) revealed substantial intraspecific variations depending on climate and geographic origin. Ecological Processes, 11, 34. doi:10.1186/s13717-022-00378-w
- Kende, Z., Piroska, P., Szemők, G. E., Khaeim, H., Sghaier, A. H., Gyuricza, C., & Tarnawa, Á. (2024). Optimizing water, temperature, and density conditions for in vitro pea (Pisum sativum L.) germination. Plants, 13 (19), 2776. doi:10.3390/plants13192776
- Lamichhane, J. R., Debaeke, P., Steinberg, C., You, M. P., Barbetti, M. J., & Aubertot, J.-N. (2018). Abiotic and biotic factors affecting crop seed germination and seedling emergence: A conceptual framework. Plant and Soil, 432 (1–2), 1–28. doi:10.1007/s11104-018-3780-9
- Lazaridi, E., & Bebeli, P. J. (2023). Cowpea constraints and breeding in Europe. Plants, 12(6), 1339. doi:10.3390/plants12061339
- Lazaridi, E., Kapazoglou, A., Gerakari, M., Kleftogianni, K., Passa, K., Sarri, E., Papasotiropoulos, V., Tani, E., & Bebeli, P. J. (2024). Crop landraces and indigenous varieties: A valuable source of genes for plant breeding. Plants, 13 (6), 758. doi:10.3390/plants13060758
- Lazaridi, E., Ntatsi, G., Savvas, D., & Bebeli, P. J. (2017). Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genetic Resources and Crop Evolution, 64 (7), 1381–1392. doi:10.1007/s10722-016-0452-6
- Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25 (1), 1–18. doi:10.18637/jss.v025.i01
- Lo, S., Muñoz-Amatriaín, M., Boukar, O., Herniter, I., Cisse, N., Guo, Y.-N., Roberts, P. A., Xu, S., Fatokun, C., & Close, T. J. (2018). Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 8 (1), 6261. doi:10.1038/s41598-018-24349-4
- Lozano-Isla, F., Benites-Alfaro, O. E., & Pompelli, M. F. (2019). GerminaR: An R package for germination analysis with the interactive web application “GerminaQuant for R”. Ecological Research, 34 (2), 339–346. doi:10.1111/1440-1703.1275
- Makhaye, G., Aremu, A. O., Gerrano, A. S., Tesfay, S., Du Plooy, C. P., & Amoo, S. O. (2021). Biopriming with seaweed extract and microbial-based commercial biostimulants influences seed germination of five Abelmoschus esculentus genotypes. Plants, 10 (7), 1327. doi:10.3390/plants10071327
- Mavi, K., Demir, I., & Matthews, S. (2010). Mean germination time estimates the relative emergence of seed lots of three cucurbit crops under stress conditions. Seed Science and Technology, 38(1), 14–25. doi:10.15258/sst.2010.38.1.02
- Mendiburu, D. F., & Yaseen, M. (2020). Agricolae: Statistical procedures for agricultural research (R package version 1.4.0) [Computer software]. Retrieved from https://cran.rproject.org/package=agricolae
- Mis, S., Ermis, S., Powell, A. A., & Demis, I. (2022). Radicle emergence (RE) test identifies differences in normal germination percentages (NG) of watermelon, lettuce and carrot seed lots. Seed Science and Technology, 50 (2), 257–267. doi:10.15258/sst.2022.50.2.09
- Mkhonta, K. A. K., Shimelis, H., Abady, S., & Ngidi, A. (2025). Agronomic performance of newly developed elite cowpea mutant lines in Eswatini. Agriculture, 15 (15), 1631. doi:10.3390/agriculture15151631
- Mndzebele, B., Ncube, B., Nyathi, M., Kanu, S. A., Fessehazion, M., Mabhaudhi, T., Amoo, S., & Modi, A. T. (2020). Nitrogen fixation and nutritional yield of a cowpea–amaranth intercrop. Agronomy, 10 (4), 565. doi:10.3390/agronomy10040565
- Molosiwa, O. O., Gwafila, C., Makore, J., & Chite, S. M. (2016). Phenotypic variation in cowpea (Vigna unguiculata [L.] Walp.) germplasm collection from Botswana. International Journal of Biodiversity and Conservation, 8, 153–163. doi:10.5897/IJBC2016.0949
- Nkoana, L., Tsilo, T. J., & Shayanowako, T. A. (2019). Morphological diversity and genetic structure of cowpea landraces (Vigna unguiculata L. Walp.) in South Africa. South African Journal of Plant and Soil, 36 (5), 380–390. doi:10.1080/02571862.2019.1596963
- Ongom, P. O., Fatokun, C., Togola, A., Dieng, I., Salvo, S., Gardunia, B., Baba Mohammed, S., & Boukar, O. (2024). Genetic progress in cowpea [Vigna unguiculata (L.) Walp.] stemming from breeding modernization efforts at the International Institute of Tropical Agriculture. The Plant Genome, 17 (2), e20462. doi:10.1002/tpg2.20462
- Orobiyi, A., Loko, L. Y., Sanoussi, F., Agré, A. P., Korie, N., Gbaguidi, A., Adjatin, A., Agbangla, C., & Dansi, A. (2018). Agro-morphological characterization of chili pepper landraces (Capsicum annuum L.) cultivated in Northern Benin. Genetic Resources and Crop Evolution, 65, 555–569. doi:10.1007/s10722-017-0553-x
- Osipitan, O. A., Fields, J. S., Lo, S., & Cuvaca, I. (2021). Production systems and prospects of cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy, 11(11), 2312. doi:10.3390/agronomy11112312
- Padulosi, S., & Ng, N. Q. (1997). Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In B. B. Singh, D. R. Mohan Raj, K. E. Dashiell & L. E. N. Jackai (Eds.), Advances in cowpea research (pp.1–12). Ibadan, Nigeria: Japan International Research Center for Agricultural Sciences and International Institute of Tropical Agriculture.
- Paiva, E. P. de, Sá, F. V. da S., Torres, S. B., Brito, M. E. B., Moreira, R. C. L., & Silva, L. de A. (2018). Germination and tolerance of cowpea (Vigna unguiculata) cultivars to water stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(6), 407–411. doi:10.1590/1807-1929/agriambi.v22n6p407-411
- R Core Team. (2023). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
- Ravelombola, W. S., Shi, A., Weng, Y., Clark, J., Motes, D., Chen, P., & Srivastava, V. (2017). Evaluation of salt tolerance at the germination stage in cowpea (Vigna unguiculata (L.) Walp.). HortScience, 52 (9), 1168–1176. doi:10.21273/HORTSCI12195-17
- Sissoko, M., Theriault, V., & Smale, M. (2022). Beyond grain: The potential of cowpea in local markets of Mali. Journal of Agribusiness in Developing and Emerging Economies, 12 (3), 1–36. doi:10.1108/JADEE-02-2022-0035
- Sylla, A., Yila, J. O., Diallo, S., & Traoré, S. (2023). Importance of the social structures in cowpea varietal demands for women and men farmers in Ségou Region, Mali. Sustainability, 15(4), 3433. doi:10.3390/su15043433
- Toujgani, I., El Fatehi, S., Ater, M., & Hmimsa, Y. (2022). Phenotypic polymorphism of leaves among the populations of Moroccan chestnut (Castanea sativa Mill.). Australian Journal of Crop Science, 16 (10), 1170–1176. doi:10.21475/ajcs.22.16.10.p3649
- Vleugels, T., Van den Broeck, J., & Knapen, G. (2011). Seed vigor and its impact on germination speed and field emergence. Seed Science Research, 21 (2), 127–136. doi:10.1017/S096025851100004X
- Weston, L. A., Zimdahl, R. L., & Davis, A. S. (2000). Seed germination, emergence, and plant vigor in relation to stress tolerance. Agronomy Journal, 92 (3), 681–688. doi:10.2134/agronj2000.923681x
- Wickham, H., François, R., Henry, L., & Müller, K. (2023). dplyr: A grammar of data manipulation (R package version 1.1.0). Retrieved from https://cran.r-project.org/package=dplyr
- Widajati, E., Syukur, M., Diaguna, R., Permatasari, O. S. I., Ritonga, A. W., Sahid, Z. D., Pratiwi, G. R., & Hatta, A. N. N. L. (2023). Morpho-physiological seed diversity and viability of Indonesian cowpea (Vigna unguiculata). Biodiversitas, 24 (10), 5319–5327. doi:10.13057/biodiv/d241013
- Wu, X., Michael, V. N., López-Hernández, F., Cortés, A. J., Morris, J. B., Wang, M., Tallury, S., Miller II, M. C., & Blair, M. W. (2024). Genetic diversity and genome-wide association in cowpeas (Vigna unguiculata L. Walp). Agronomy, 14 (5), 961. doi:10.3390/agronomy14050961
- Xue, X., Du, S., Jiao, F., Xi, M., Wang, A., Xu, H., Jiao, Q., Zhang, X., Jiang, H., Chen, J., & Wang, M. (2021). The regulatory network behind maize seed germination: Effects of temperature, water, phytohormones, and nutrients. The Crop Journal, 9 (4), 718–724. doi:10.1016/j.cj.2021.03.006