Vol. 119 No. 1 (2025)
Research Papers

Modelling the Dynamic Interaction between Production Growth and Carbon Footprint of Livestock Sector in Ethiopia

Petros Terefe Tolcha
Department of Economics, Haramaya University, Dire Dawa, Ethiopia
Helen Berga Paulos
Department of Economics, Addis Ababa University, Addis Ababa, Ethiopia

Published 2025-07-08

Keywords

  • livestock,
  • carbon footprint,
  • system dynamics,
  • Ethiopia

How to Cite

Terefe Tolcha, P., & Berga Paulos, H. (2025). Modelling the Dynamic Interaction between Production Growth and Carbon Footprint of Livestock Sector in Ethiopia. Journal of Agriculture and Environment for International Development (JAEID), 119(1), 439–468. https://doi.org/10.36253/jaeid-16931

Abstract

: Livestock is the largest agricultural subsector, supporting the livelihood of many populations and the economy in Ethiopia. The sector is, however, a significant contributor to the carbon footprint in the country. Only direct emissions from the sector accounted for more than 36% of total emissions. Thus, the purpose of this study is to model and evaluate the livestock production system and its contribution to the carbon footprint. A system dynamics model that represents the livestock production system and its interaction with the environment in Ethiopia has been built. The simulated results have demonstrated that increasing meat productivity through improvement in feed quality and supply, increasing slaughter, managing land use change, and implementing price policy have a sound effect on lowering greenhouse gas emissions (GHG) while also improving the supply and value of meat. The policy scenario has achieved 15% and 11% growth in meat and livestock value, respectively, while reducing greenhouse gas emissions by 40% compared to the base case in 2040.

 

References

  1. Abbasi, T., & Abbasi, S. (2016). Reducing the global environmental impact of livestock production: the minilivestock option. Journal of Cleaner Production, 112, 1754-1766. DOI: https://doi.org/10.1016/j.jclepro.2015.02.094
  2. Abera, M., Tolera, A., & Assefa, G. J. I. J. o. S. (2014). Feed resource assessment and utilization in Baresa watershed, Ethiopia. International Journal of Science and Research in Economics, 3(2), 66-72.
  3. Addis, A. B. (2017). Major constraints of livestock marketing in lowland part of Ethiopia. International Journal of Engineering Development and Research, 5(1), 489-499.
  4. Adem, M. (2019). Production of hide and skin in Ethiopia; marketing opportunities and constraints: a review paper. Cogent Food and Agriculture, 5(1), 1565078. DOI: https://doi.org/10.1080/23311932.2019.1565078
  5. Admassie, A., & Abebaw, D. (2021). Ethiopia-Land, Climate, Energy, Agriculture and Development: A Study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security. Center for Development Research, University of Bonn.
  6. African Union. (2022). Africa’s Climate Change and Resilient Development Strategy and Action Plan (2022-2032).
  7. Al-Masri, R. A., Spyridopoulos, T., Karatzas, S., Lazari, V., & Tryfonas, T. (2021). A Systems Approach to Understanding Geopolitical Tensions in the Middle East in the Face of a Global Water Shortage. International Journal of System Dynamics Applications (IJSDA), 10(4), 1-23. doi:10.4018/IJSDA.289431 DOI: https://doi.org/10.4018/IJSDA.289431
  8. Alemayehu, N. (2013). Assessment of environmental-livestock interactions in crop-livestock systems of central Ethiopian highlands. University of South Africa,
  9. Alemu, B. (2015). The effect of land use land cover change on land degradation in the highlands of Ethiopia. Journal of Environment and Earth Science, 5(1), 1-13.
  10. Alkemade, R., Reid, R. S., van den Berg, M., de Leeuw, J., & Jeuken, M. (2013). Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. PNAS, 110(52), 20900-20905. doi:doi:10.1073/pnas.1011013108 DOI: https://doi.org/10.1073/pnas.1011013108
  11. Altaye, S. Z., Kassa, B., Agza, B., Alemu, F., & Muleta, G. (2014). Smallholder cattle production systems in Metekel zone, northwest Ethiopia. Research Journal of Agriculture Environmental Management, 3(2), 151-157.
  12. Amadei, B. (2021). An Integrated Approach to Peace and Resource Security. International Journal of System Dynamics Applications (IJSDA), 10(4), 1-23. doi:10.4018/IJSDA.20211001.oa7 DOI: https://doi.org/10.4018/IJSDA.20211001.oa7
  13. Amsalu, T., & Addisu, S. (2014). Assessment of Grazing Land and Livestock Feed Balance in Gummara-Rib Watershed, Ethiopia. Current Agriculture Research Journal, 2(2), 114. DOI: https://doi.org/10.12944/CARJ.2.2.08
  14. Andeweg, K., & Reisinger, A. (2014). Reducing greenhouse gas emissions from livestock: Best practice and emerging options: New Zealand Agricultural Greenhouse Gas Research Centre.
  15. Asmare, B., & Mekuriaw, Y. (2017). Assessment of livestock production system and feed balance in watersheds of North Achefer District, Ethiopia. Journal of Agriculture and Environment for International Development, 111(1), 175-190.
  16. Atsbha, T., Desta, A. B., & Zewdu, T. (2019). Carbon sequestration potential of natural vegetation under grazing influence in Southern Tigray, Ethiopia: implication for climate change mitigation. Heliyon, 5(8), e02329. DOI: https://doi.org/10.1016/j.heliyon.2019.e02329
  17. Ayele, J., Tolemariam, T., Beyene, A., Tadese, D. A., & Tamiru, M. (2021). Assessment of livestock feed supply and demand concerning livestock productivity in Lalo Kile district of Kellem Wollega Zone, Western Ethiopia. Heliyon, 7(10), e08177. doi:https://doi.org/10.1016/j.heliyon.2021.e08177 DOI: https://doi.org/10.1016/j.heliyon.2021.e08177
  18. Ayele, J., Tolemariam, T., Beyene, A., Tadese, D. A., & Tamiru, M. (2022). Biomass composition and dry matter yields of feed resource available at Lalo kile district of Kellem Wollega Zone, Western Ethiopia. Heliyon, 8(2), e08972. doi:https://doi.org/10.1016/j.heliyon.2022.e08972 DOI: https://doi.org/10.1016/j.heliyon.2022.e08972
  19. Azar, A. T. (2012). System dynamics as a useful technique for complex systems. International Journal of Industrial and Systems Engineering, 10, 377-410. doi:10.1504/IJISE.2012.046298 DOI: https://doi.org/10.1504/IJISE.2012.046298
  20. Azar, A. T., & Vaidyanathan, S. (2018). Advances in System Dynamics and Control. DOI: https://doi.org/10.4018/978-1-5225-4077-9
  21. Bachewe, F. N., Minten, B., & Yimer, F. (2017). The rising costs of animal-source foods in Ethiopia: Evidence and implications (Vol. 108): Intl Food Policy Res Inst.
  22. Bailey, R., Froggatt, A., & Wellesley, L. (2014). Livestock–climate change’s forgotten sector. Chatham House Report.
  23. Bala, B. K., Arshad, F. M., & Noh, K. M. (2017). System dynamics: Modelling and Simulation. DOI: https://doi.org/10.1007/978-981-10-2045-2
  24. Baltenweck, I., Enahoro, D., Frija, A., & Tarawali, S. (2020). Why Is Production of Animal Source Foods Important for Economic Development in Africa and Asia? Animal Frontiers, 10(4), 22-29. doi:10.1093/af/vfaa036 %J Animal Frontiers DOI: https://doi.org/10.1093/af/vfaa036
  25. Baporikar, N. (2021). Innovative Systems Structure for Real Corporate Governance. International Journal of System Dynamics Applications (IJSDA), 10(4), 1-20. doi:10.4018/IJSDA.20211001.oa1 DOI: https://doi.org/10.4018/IJSDA.20211001.oa1
  26. Bassa, Z. (2021). Meta-Analysis on Improved Livestock Technology Adoption in Ethiopia. Business and Economics Journal.
  27. Bayissa, T., Dugumaa, B., & Desalegn, K. (2022). Chemical composition of major livestock feed resources in the medium and low agroecological zones in the mixed farming system of Haru District, Ethiopia. Heliyon, 8(2), e09012. DOI: https://doi.org/10.1016/j.heliyon.2022.e09012
  28. Bediye, S., Nemi, G., & Makkar, H. (2018). Ethiopian feed industry: current status, challenges and opportunities. Feedipedia, 50.
  29. Birhan, M., & Adugna, T. (2014). Livestock feed resources assessment, constraints and improvement strategies in Ethiopia. Middle-East Journal of Scientific Research, 21(4), 616-622.
  30. Boka, J. B. (2020). The role of livestock in poverty reduction among Ethiopian households. Addis Ababa University Addis Ababa, Ethiopia,
  31. Broom, D., Galindo, F., & Murgueitio, E. (2013). Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20132025. DOI: https://doi.org/10.1098/rspb.2013.2025
  32. Cardoso, L. A. (2012). Environmental and economic impacts of livestock productivity increase in sub-Saharan Africa. Tropical Animal Health and Production, 44(8), 1879-1884. doi:10.1007/s11250-012-0151-z DOI: https://doi.org/10.1007/s11250-012-0151-z
  33. Caro, D., Kebreab, E., & Mitloehner, F. M. (2016). Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Climatic Change, 137, 467-480. DOI: https://doi.org/10.1007/s10584-016-1686-1
  34. Catley, A., Admassu, B., Bekele, G., & Abebe, D. (2014). Livestock mortality in pastoralist herds in Ethiopia and implications for drought response. Disasters, 38(3), 500-516. DOI: https://doi.org/10.1111/disa.12060
  35. Cheng, M., McCarl, B., & Fei, C. (2022). Climate change and livestock production: a literature review. Atmosphere, 13(1), 140. DOI: https://doi.org/10.3390/atmos13010140
  36. Climate Watch. (2022). World Resources Institute: Washington, DC. https://www.climatewatchdata.org/
  37. CSA. (2021). Central Statistical Agency. Agricultural sample survey 2020/2021. Report on livestock and livestock characteristics (private peasant holdings). In (pp. 1-199): Statistical bulletin, Addis Ababa.
  38. Defar, G. (2016). A Review on Enteric Methane Emission by Domestic Ruminants: Contribution to Green House Gas and Mitigation Opportunities in Ethiopia. American-Eurasian Journal of Scientific Research. doi:10.5829/idosi.aejsr.2016.411.419
  39. Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., & Courbois, C. (2001). Livestock to 2020: The next food revolution. Outlook on Agriculture, 30(1), 27-29. DOI: https://doi.org/10.5367/000000001101293427
  40. Dinku, A., Abebe, B., Lemma, A., & Shako, M. (2019). Beef cattle value chain analysis: Evidence from West Hararghe Zone of Ethiopia. Int J Agric Sc Food Technol, 5(1), 077-087. DOI: https://doi.org/10.17352/2455-815X.000046
  41. Duarte dos Santos, L., Schlindwein, S. L., Filho, E. H. R., Vaz, C. R., Maldonado, M. U., Fantini, A. C., & Belderrain, M. C. N. (2021). A Multimethodology for Supporting the Boundary Selection of System Dynamics Models. International Journal of System Dynamics Applications (IJSDA), 10(4), 1-18. doi:10.4018/IJSDA.20211001.oa12 DOI: https://doi.org/10.4018/IJSDA.20211001.oa12
  42. Duguma, B., Tegegne, A., & Hegde, B. (2012). Smallholder livestock production system in Dandi district, Oromia Regional State, central Ethiopia. Read and write, 20, 25-26.
  43. Duressa, D., Kenea, D., Keba, W., Desta, Z., Berki, G., Leta, G., & Tolera, A. (2014). Assessment of livestock production system and feed resources availability in three villages of Diga district Ethiopia. Retrieved from Nairobi, Kenya:
  44. EFCCC. (2017). Ethiopia’s Forest Reference Level Submission to the UNFCCC. Retrieved from https://redd.unfccc.int/files/2016_submission_frel_ethiopia.pdf
  45. Enahoro, D., Mason-D’Croz, D., Mul, M., Rich, K. M., Robinson, T. P., Thornton, P., & Staal, S. S. (2019). Supporting sustainable expansion of livestock production in South Asia and Sub-Saharan Africa: Scenario analysis of investment options. Global Food Security, 20, 114-121. doi:https://doi.org/10.1016/j.gfs.2019.01.001 DOI: https://doi.org/10.1016/j.gfs.2019.01.001
  46. Ericksen, P. J., & Crane, T. A. (2018). The feasibility of low emissions development interventions for the East African livestock sector: Lessons from Kenya and Ethiopia (9291465429). Retrieved from file:///C:/Users/peter/Downloads/RR46.pdf
  47. Fantu, B., Bart, M., Fanaye, T., & Taffesse, A. (2018). The evolving livestock sector in Ethiopia: growth by heads, not by productivity. ESSP Working Paper-Ethiopia Strategy Support Program(122).
  48. FAO. (2009). Livestock, food security and poverty reduction. The State of Food and Agriculture, 32-52. DOI: https://doi.org/10.18356/d2c09924-en
  49. FAO. (2016). AQUASTAT Country Profile – Ethiopia. from Food and Agriculture Organization of the United Nations (FAO)
  50. FAO. (2019). Five practical actions towards low-carbon livestock. Retrieved from Rome, Italy:
  51. FAO. (2020a). AQUASTAT Database - Water resources. https://tableau.apps.fao.org/views/AQUASTATDashboard/result_country?%3Aembed=y&%3AisGuestRedirectFromVizportal=y
  52. FAO. (2020b). FAOSTAT Climate Change - Agrifood systems emissions. Retrieved May 17, 2023 https://www.fao.org/faostat/en/#data/domains_table
  53. FAO. (2020c). FAOSTAT Climate Change - Enteric Fermentation. Retrieved May 6, 2023 https://www.fao.org/faostat/en/#data/GE
  54. FAO. (2020d). FAOSTAT Production - Crops and livestock products. Retrieved January 7, 2023 https://www.fao.org/faostat/en/#data/QCL
  55. FAO. (2020e). FAOSTAT Production - Value of Agricultural Production. Retrieved Januray 31, 2023 https://www.fao.org/faostat/en/#data/QV
  56. FAO. (2020f). Land, Inputs and Sustainability - Livestock Patterns. Retrieved January 31, 2023 https://www.fao.org/faostat/en/#data/EK
  57. FAO. (2022). RuLIS – Rural Livelihoods Information System. Retrieved May 6, 2023 https://www.fao.org/in-action/rural-livelihoods-dataset-rulis/data-application/data/by-indicator/en
  58. Federal Democratic Republic of Ethiopia. (2011). Ethiopia's Climate-Resilient Green Economy: Green Economy Strategy. Addis Ababa, Ethiopia Retrieved from https://books.google.com.et/books?id=ffxzkHtY2oAC
  59. Federal Democratic Republic of Ethiopia. (2020). Ethiopia’s Climate Resilient Green Economy: National Adaptation Plan (NAP) Implementation Roadmap. Addis Ababa, Ethiopia
  60. Federal Democratic Republic of Ethiopia. (2021a). Ethiopia 2030: The Pathway to Prosperity Ten Years Perspective Development Plan (2021 – 2030).
  61. Federal Democratic Republic of Ethiopia. (2021b). Updated Nationally Determined Contribution.
  62. Feed the Future. (2017). Feed the Future Ethiopia Value Chain Activity Partnering with the Agricultural Growth Program. Retrieved from https://pdf.usaid.gov/pdf_docs/PA00ZDSV.pdf
  63. Food and Agriculture Organization. (2017). Country Programming Framework for Ethiopia 2016–2020. FAO Representation in Ethiopia, Addis Ababa Retrieved from https://www.fao.org/3/i7527e/i7527e.pdf
  64. Food and Agriculture Organization. (2020). Evaluation of FAO’s country programme in Ethiopia 2014-2019: Food & Agriculture Org.
  65. Fraval, S., Duncan, A. J., Notenbaert, A. M. O., Mutua, J. Y., & Thornton, P. K. (2021). Livestock feed constraints in East Africa: spatialized metrics for availability and quality. Paper presented at the Paper presented at the Joint IGC/IRC Virtual Congress.
  66. Gadisa, M. B. (2022). Perception of Stakeholders for Meat Qualities among Value Chain Actors in Ethiopia. Veterinary Medicine International, 2022. DOI: https://doi.org/10.1155/2022/1247459
  67. Gashaw, T., Asresie, A., & Haylom, M. (2014). Climate change and livestock production in Ethiopia. Adv Life Sci Technol, 22, 39-42.
  68. Gebreselassie, S., Kirui, O. K., & Mirzabaev, A. (2016). Economics of Land Degradation and Improvement in Ethiopia. In E. Nkonya, A. Mirzabaev, & J. von Braun (Eds.), Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (pp. 401-430). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-19168-3_14
  69. Gibbs, M., & Johnson, D. (1993). Livestock emissions. International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, DC, USA.
  70. Graham, M. W., Butterbach-Bahl, K., du Doit, C. L., Korir, D., Leitner, S., Merbold, L., . . . Rufino, M. C. (2022). Research progress on greenhouse gas emissions from livestock in sub-Saharan Africa falls short of national inventory ambitions. Frontiers in Soil Science, 2, 927452. DOI: https://doi.org/10.3389/fsoil.2022.927452
  71. Grima, Y. (2018). DETERMINANTS OF CATTLE PRODUCTIVITY AT HOUSEHOLD LEVEL IN HADIYA ZONE (A CASE OF SORO WOREDA, SNNPR, ETHIOPIA).
  72. Haile, A., Gizaw, S., Getachew, T., Mueller, J. P., Amer, P., Rekik, M., & Rischkowsky, B. (2019). Community-based breeding programmes are a viable solution for Ethiopian small ruminant genetic improvement but require public and private investments. J Anim Breed Genet, 136(5), 319-328. doi:https://doi.org/10.1111/jbg.12401 DOI: https://doi.org/10.1111/jbg.12401
  73. Hatew, B., Peñagaricano, F., Balehegn, M., Jones, C. S., Dahl, G. E., & Adesogan, A. T. (2023). Synergies of feed, management trainings, and genetics on milk production of dairy cows in the tropics: The case of Ethiopian smallholder farmers. Front. Anim. Sci, 4. doi:10.3389/fanim.2023.1119786 DOI: https://doi.org/10.3389/fanim.2023.1119786
  74. Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M. C. (2013). The roles of livestock in developing countries. animal, 7(s1), 3-18. doi:10.1017/S1751731112001954 DOI: https://doi.org/10.1017/S1751731112001954
  75. Herrero, M., Thornton, P. K., Gerber, P., & Reid, R. S. (2009). Livestock, livelihoods and the environment: understanding the trade-offs. Current Opinion in Environmental Sustainability, 1(2), 111-120. doi:https://doi.org/10.1016/j.cosust.2009.10.003 DOI: https://doi.org/10.1016/j.cosust.2009.10.003
  76. Idel, A., Fehlenberg, V., & Reichert, T. (2013). Livestock production and food security in a context of climate change and environmental and health challenges. Trade and Environment Review, 138-153.
  77. Jahnke, H. E., & Jahnke, H. E. (1982). Livestock production systems and livestock development in tropical Africa (Vol. 35): Kieler Wissenschaftsverlag Vauk Kiel.
  78. Jemberu, W. T., Li, Y., Asfaw, W., Mayberry, D., Schrobback, P., Rushton, J., & Knight-Jones, T. J. D. (2022). Population, biomass, and economic value of small ruminants in Ethiopia. Frontiers in Veterinary Science, 9. doi:10.3389/fvets.2022.972887 DOI: https://doi.org/10.3389/fvets.2022.972887
  79. Kassie, G. T., Wubie, R. S., Tokgoz, S., Majeed, F., Yitayih, M., & Rischkowsky, B. (2019). Policy-induced price distortions along the small ruminant value chains in Ethiopia. Journal of Agribusiness in Developing and Emerging Economies, 9(3), 220-236. doi:10.1108/JADEE-02-2018-0024 DOI: https://doi.org/10.1108/JADEE-02-2018-0024
  80. Kebebe, E. (2019). Bridging technology adoption gaps in livestock sector in Ethiopia: A innovation system perspective. Technology in Society, 57, 30-37. DOI: https://doi.org/10.1016/j.techsoc.2018.12.002
  81. Kimball, T. (2011). Environmental Policy Review 2011: Livestock Production Systems and their Environmental Implications in Ethiopia. Environmental Policy Review: Key Issues in Ethiopia, 69.
  82. Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2015). Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environmental Monitoring and Assessment, 187(7), 452. doi:10.1007/s10661-015-4671-7 DOI: https://doi.org/10.1007/s10661-015-4671-7
  83. Kochare, T., Tamir, B., & Kechero, Y. (2018). Livestock-feed balance in small and fragmented land holdings: The case of Wolayta zone, Southern Ethiopia. International Journal of Livestock Production, 9(7), 165-174. DOI: https://doi.org/10.5897/IJLP2017.0430
  84. Liu, M., Xu, W., Zhang, H., Chen, H., Han, G., & Yu, X. (2022). Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence. Munich Personal RePEc Archive. DOI: https://doi.org/10.2139/ssrn.4306904
  85. Ma’alin, A., Abdimahad, K., Hassen, G., Mahamed, A., & Hassen, M. (2021). Management Practices and Production Constraints of Indigenous Somali Cattle Breed in Shabelle Zone, Somali Regional State, Ethiopia. Open Journal of Animal Sciences, 12(1), 103-117. DOI: https://doi.org/10.4236/ojas.2022.121008
  86. Mamo, E. M., Mengistu, A., & Asebe, G. (2017). Opportunity and constraints of livestock feed resources in Abol and Lare districts of Gambella region, Ethiopia. Nutri Food Sci Int J.
  87. McDonnell, G., Azar, A. T., & White, J. C. (2013). Renal System Dynamics Modeling. In A. T. Azar (Ed.), Modeling and Control of Dialysis Systems: Volume 2: Biofeedback Systems and Soft Computing Techniques of Dialysis (pp. 1275-1320). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-27558-6_11
  88. McIntire, J., Reed, J. D., Teḍla, A., Jutzi, S., & Kebede, Y. (1988). Evaluating sorghum cultivars for grain and straw yield. Paper presented at the Plant Breeding and the Nutritive Value of Crop Residues: Proceedings of a Workshop Held at ILCA, Addis Ababa, Ethiopia, 7-10 December 1987.
  89. McMichael, A. J., Powles, J. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. The Lancet, 370(9594), 1253-1263. doi:https://doi.org/10.1016/S0140-6736(07)61256-2 DOI: https://doi.org/10.1016/S0140-6736(07)61256-2
  90. Mekasha, A., Gerard, B., Tesfaye, K., Nigatu, L., & Duncan, A. J. (2014). Inter-connection between land use/land cover change and herders’/farmers’ livestock feed resource management strategies: a case study from three Ethiopian eco-environments. Agriculture, Ecosystems & Environment, 188, 150-162. doi:https://doi.org/10.1016/j.agee.2014.02.022 DOI: https://doi.org/10.1016/j.agee.2014.02.022
  91. Mekuria, W., Mekonnen, K., Thorne, P., Bezabih, M., Tamene, L., & Abera, W. (2018). Competition for land resources: driving forces and consequences in crop-livestock production systems of the Ethiopian highlands. Ecological processes, 7, 1-15. DOI: https://doi.org/10.1186/s13717-018-0143-7
  92. Mekuriaw, Z., & Harris-Coble, L. (2021). Ethiopia’s Livestock Systems: Overview and Areas of Inquiry. In: Feed the Future Innovation Lab for Livestock Systems Gainesville, FL, USA.
  93. Mengistu, S., Nurfeta, A., Tolera, A., Bezabih, M., Adie, A., Wolde-meskel, E., & Zenebe, M. (2021). Livestock Production Challenges and Improved Forage Production Efforts in the Damot Gale District of Wolaita Zone, Ethiopia. Advances in Agriculture, 2021, 5553659. doi:10.1155/2021/5553659 DOI: https://doi.org/10.1155/2021/5553659
  94. Meragiaw, M., Woldu, Z., Martinsen, V., & Singh, B. R. (2021). Carbon stocks of above- and belowground tree biomass in Kibate Forest around Wonchi Crater Lake, Central Highland of Ethiopia. PLOS ONE, 16(7), e0254231. doi:10.1371/journal.pone.0254231 DOI: https://doi.org/10.1371/journal.pone.0254231
  95. Minten, B., Dereje, M., Bachewe, F. N., & Tamru, S. (2018). Evolving food systems in Ethiopia: Past, present and future (Vol. 117): Intl Food Policy Res Inst.
  96. Mishra, D., Chauhan, H., & Sahoo, A. K. (2021). An Analysis of Safety Practices of Farmers in Odisha (India) for Sustainable Agriculture. International Journal of System Dynamics Applications (IJSDA), 10(1), 48-64. doi:10.4018/IJSDA.2021010104 DOI: https://doi.org/10.4018/IJSDA.2021010104
  97. National Bank of Ethiopia. (2021). Annual Report. Retrieved from https://nbebank.com/wp-content/uploads/pdf/annualbulletin/Annual%20Report%202020-2021/2020-21%20Annual%20Report.pdf
  98. Negassa, A., Rashid, S., & Gebremedhin, B. (2011). Livestock production and marketing in Ethiopia. Ethiopian Support Strategy Program II (ESSP II) Working Paper. 26. In: Washington, DC: IFPRI.
  99. Nell, A. J. (2006). Quick scan of the livestock and meat sector in Ethiopia: Issues and opportunities. Retrieved from
  100. Nicholson, C. F., Blake, R. W., Reid, R. S., & Schelhas, J. (2001). Environmental impacts of livestock in the developing world. Environment, Science and Policy for Sustainable Development, 43(2), 7-17. DOI: https://doi.org/10.1080/00139150109605120
  101. Orheruata, A., & Omoyakhi, J. (2007). Livestock-environment interaction: issues and options in Nigeria. Journal of Applied Sciences and Environmental Management, 11(4). DOI: https://doi.org/10.4314/jasem.v11i4.55178
  102. Otte, J., Pica-Ciamarra, U., & Morzaria, S. (2019). A comparative overview of the livestock-environment interactions in Asia and Sub-Saharan Africa. Frontiers in Veterinary Science, 6, 37. DOI: https://doi.org/10.3389/fvets.2019.00037
  103. Patel, B., Sharaff, A., & Verulkar, S. (2022). Statistical Growth Analysis of Rice Plants in Chhattisgarh Region Using Automated Pixel-Based Mapping Technique. International Journal of System Dynamics Applications (IJSDA), 11(1), 1-20. doi:10.4018/IJSDA.302632 DOI: https://doi.org/10.4018/IJSDA.302632
  104. Paul, B. K., Butterbach-Bahl, K., Notenbaert, A., Nderi, A. N., & Ericksen, P. (2020). Sustainable livestock development in low-and middle-income countries: shedding light on evidence-based solutions. Environmental Research Letters, 16(1), 011001. DOI: https://doi.org/10.1088/1748-9326/abc278
  105. Post, P. M., Hogerwerf, L., Bokkers, E. A., Baumann, B., Fischer, P., Rutledge-Jonker, S., . . . Liebman, A. (2020). Effects of Dutch livestock production on human health and the environment. Science of the Total Environment, 737, 139702. DOI: https://doi.org/10.1016/j.scitotenv.2020.139702
  106. Prasad, R. R., Dean, M. R. U., & Alungo, B. (2022). Climate Change Impacts on Livestock Production and Possible Adaptation and Mitigation Strategies in Developing Countries: A Review. Journal of Agricultural Science. DOI: https://doi.org/10.5539/jas.v14n3p240
  107. Qi, J., Xin, X., John, R., Groisman, P., & Chen, J. (2017). Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecological processes, 6(1), 22. doi:10.1186/s13717-017-0087-3 DOI: https://doi.org/10.1186/s13717-017-0087-3
  108. Raney, T., Skoet, J., & Steinfeld, H. (2009a). The state of food and agriculture: livestock in the balance.
  109. Raney, T., Skoet, J., & Steinfeld, H. (2009b). The state of food and agriculture: livestock in the balance. Retrieved from Rome, Italy: http://www.fao.org/publications/sofa/en/
  110. Ravi, J., Shaw, S., Boulenger, X., & Neto, J. (2023). SECTOR ENVIRONMENTAL GUIDELINE: LIVESTOCK PRODUCTION. Retrieved from https://www.usaid.gov/sites/default/files/2023-03/SEG_Livestock_Production.pdf
  111. Ray, P. (2021). Agricultural Supply Chain Risk Management Under Price and Demand Uncertainty. International Journal of System Dynamics Applications (IJSDA), 10(2), 17-32. doi:10.4018/IJSDA.2021040102 DOI: https://doi.org/10.4018/IJSDA.2021040102
  112. Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. M., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145-163. DOI: https://doi.org/10.1016/j.crm.2017.02.001
  113. Rothman-Ostrow, P., Gilbert, W., & Rushton, J. (2020). Tropical livestock units: re-evaluating a methodology. Frontiers in Veterinary Science, 7, 556788. DOI: https://doi.org/10.3389/fvets.2020.556788
  114. Rotz, A. (2020). Environmental sustainability of livestock production. Meat and Muscle Biology, 4(2). DOI: https://doi.org/10.22175/mmb.11103
  115. Shapiro, B. I., Gebru, G., Desta, S., Negassa, A., Negussie, K., Aboset, G., & Mechal, H. (2015). Ethiopia livestock master plan: Roadmaps for growth and transformation.
  116. Sileshi, Z., Tegegne, A., & Tsadik, G. T. (2003). Water resources for livestock in Ethiopia: Implications for research and development. Integrated water and land management research and capacity building priorities for Ethiopia, 66.
  117. Solomon, A., Assegid, W., Jabbar, M. A., & Ahmed, M. M. (2003). Livestock Marketing in Ethiopia: A Review of Structure, Performance, and Development Initiatives: Livestock Marketing Authority, Federal Democratic Republic of Ethiopia.
  118. Stehfest, E., van den Berg, M., Woltjer, G., Msangi, S., & Westhoek, H. (2013). Options to reduce the environmental effects of livestock production–comparison of two economic models. Agricultural Systems, 114, 38-53. DOI: https://doi.org/10.1016/j.agsy.2012.07.002
  119. Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., Rosales, M., Rosales, M., & de Haan, C. (2006). Livestock's long shadow: environmental issues and options: Food & Agriculture Org.
  120. Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World: McGraw-Hill School Education Group.
  121. Tadesse, M., & Getahun, K. (2021). Methane emission factors from indigenous cattle breed in smallholder livestock production systems in Ethiopia. Online Journal of Animal and Feed Research, 11(4), 145-150. DOI: https://doi.org/10.51227/ojafr.2021.22
  122. Tafere, K., & Hassen, I. W. (2012). Consumption patterns of livestock products in Ethiopia: Elasticity estimates using HICES (2004/05) data. In.
  123. Tafere, K., Taffesse, A. S., Tamiru, S., Tefera, N., & Paulos, Z. (2010). Food demand elasticities in Ethiopia: Estimates using household income consumption expenditure (HICE) survey data. In.
  124. Tefera, T. D., Mummed, Y. Y., Kurtu, M. Y., Letta, M. U., O’Quine, T. G., & Vipham, J. L. (2019). Effect of age and breeds of cattle on carcass and meat characteristics of Arsi, boran, and harar cattle in Ethiopia. Open Journal of Animal Sciences, 9(3), 367-383. DOI: https://doi.org/10.4236/ojas.2019.93030
  125. Tegegne, A., & Feye, G. (2020). Study of Selected Livestock Innovations in Ethiopia. zef Center for Development Research University of Bonn, Working Paper, 192. DOI: https://doi.org/10.2139/ssrn.3653067
  126. Tesfay, Y., Gebrelibanos, A., Woldemariam, D., & Tilahun, H. (2016). Feed resources availability, utilization and marketing in central and eastern Tigray, northern Ethiopia: International Livestock Research Institute.
  127. Teshager, A. A. (2019). PARADOXICAL ROLE OF CROP RESIDUE IN THE AGRICULTURE OF ETHIOPIAN HIGHLANDS: A REVIEW. Global Scientific Journal.
  128. Teye, G. A., & Sunkwa, W. (2010). Carcass characteristics of tropical beef cattle breeds (West African shorthorn, sanga and zebu) in Ghana. African Journal of Food, Agriculture, Nutrition and Development, 10(7). DOI: https://doi.org/10.4314/ajfand.v10i7.59041
  129. Thornton, P., Nelson, G., Mayberry, D., & Herrero, M. (2022). Impacts of heat stress on global cattle production during the 21st century: a modelling study. The Lancet Planetary Health, 6(3), e192-e201. doi:https://doi.org/10.1016/S2542-5196(22)00002-X DOI: https://doi.org/10.1016/S2542-5196(22)00002-X
  130. Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2853 - 2867. DOI: https://doi.org/10.1098/rstb.2010.0134
  131. Thornton, P. K., Enahoro, D. K., Njiru, N. M., Wijk, M. T. v., Ashley, L., Cramer, L., . . . Graham, M. (2019). Program for climate-smart livestock systems. Country stocktake: Ethiopia. Retrieved from Nairobi, Kenya: file:///C:/Users/peter/Downloads/Ethiopia%20stocktake%20report%20(1).pdf
  132. Tilahun, H., & Schmidt, E. (2012). Spatial analysis of livestock production patterns in Ethiopia.
  133. Tolera, A., & Abebe, A. (2007). Livestock production in pastoral and agro-pastoral production systems of southern Ethiopia. Livestock Research for Rural Development, 19(12), 4-7.
  134. Tschopp, R., Aseffa, A., Schelling, E., & Zinsstag, J. (2010). Farmers' perceptions of livestock, agriculture, and natural resources in the rural Ethiopian highlands. Mountain Research and Development, 30(4), 381-390. DOI: https://doi.org/10.1659/MRD-JOURNAL-D-09-00072.1
  135. Warsame, A. A., Mohamed, J., & Mohamed, A. A. (2023). The relationship between environmental degradation, agricultural crops, and livestock production in Somalia. Environmental Science and Pollution Research, 30(3), 7825-7835. doi:10.1007/s11356-022-22595-8 DOI: https://doi.org/10.1007/s11356-022-22595-8
  136. Water Footprint Network. (2016). Country Water Footprint Profile - Ethiopia. Retrieved from file:///C:/Users/peter/Downloads/Ethiopia%20Water%20Footprint%20(1).pdf
  137. Wellesley, L., Happer, C., & Froggatt, A. (2015). Changing climate, changing diets. Chatham House Report.
  138. Wieland, B. (2019). Health of Ethiopian Animals for Rural Development (HEARD).
  139. Woodbury, J., & Hashimoto, A. (1993). Methane emissions from livestock manure. US Environmental Protection Agency, Climate Change Division. International Methane Emissions, Washington, DC, USA.
  140. Worku, I., & Tafere, K. (2012). Consumption patterns of livestock products in Ethiopia: Elasticity estimates using HICES (2004/05) data. Retrieved from
  141. World Bank. (2017). Livestock and Fisheries Sector Development Project (P159382). Retrieved from Washington DC: https://documents1.worldbank.org/curated/fr/696241509495582301/pdf/Project-Information-Document-Integrated-Safeguards-Data-Sheet-Livestock-and-Fisheries-Sector-Development-Project-P159382-Sequence-No-00.pdf
  142. World Bank. (2020a). World Development Indicators - GDP per capita growth. Retrieved May 15, 2023 https://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG
  143. World Bank. (2020b). World Development Indicators - Population. Retrieved May 6, 2023 https://data.worldbank.org/indicator/SP.POP.TOTL?end=2000&locations=ET&start=2000&view=chart
  144. World Bank. (2021). World Development Indicators: Ethiopia. Retrieved February 11, 2023 https://data.worldbank.org/country/ethiopia
  145. Yisehak, K., & Janssens, G. P. (2014). The impacts of imbalances of feed supply and requirement on productivity of free-ranging tropical livestock units: links of multiple factors. African journal of basic applied sciences, 6(6), 187-197.