Impact of rhizosphere microbial communities on yield-related traits of six onion (Allium cepa L.) genotypes

Published 2025-07-08
Keywords
- Breeding,
- Bulb production,
- onion,
- rhizosphere microbial population
How to Cite
Copyright (c) 2025 Rania Aydi Ben Abdallah, Hela Chikh-Rouhou, Hayfa Jabnoun-Khiareddine, Mejda Daami-Remadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Microbial communities play an important role in plant functioning and development. The microbial population structure in the rhizosphere of six onion genotypes CRB, OPNB, CRR, OPNR, CRJ and OPNJ was monitored at three sampling times using the soil dilution plating technique. Onion genotypes were also screened for their plant growth and bulb production parameters. The total bacterial, Pseudomonas fluorescens and actinobacterial populations increased from 38 to 71% with the increase of plant growth stages compared to the status before planting. As for the fungal population, a decrease by 43-51% was recorded at harvest. Only bacterial and actinobacterial populations varied upon onion genotypes. The average bulb weight was 24.2-46.8 and 32.8-52.8% significantly higher in the OPNR and OPNJ genotypes compared to OPNB, CRJ and CRB and similar to CRR. Based on Principal Component Analysis, the total and average bulb weights were positively correlated to the total fungal and Aspergillus spp. populations in the first group and to P. fluorescens and actinobacteria populations in the second one.
References
- Abdallah, M. E., Haroun, S. A., Gomah, A. A., El-Naggar, N. E., & Badr, H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Archives of Phytopathology Plant and Protection, 46, 1797-1808. https://doi.org/10.1080/03235408.2013.778451
- AbdElgawad, H., Abuelsoud, W., Madany, M. M. Y., Selim, S., Zinta, G., Mousa, A. S. M., & Hozzein, W. N. (2020). Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules, 10, 1675-1684. https://doi.org/10.3390/biom10121675
- Aleklett, K., Rosa, D., Pickles, B. J. & Hart, M. M. (2022). Community assembly and stability in the root microbiota during early plant development. Frontiers in Microbiology, 13, 1-16. . https://doi.org/10.3389/fmicb.2022.826521
- Chalbi, A., Chikh-Rouhou, H., Tlahig, S., Mallor, C., Garcés-Claver, A., Haddad, M., Sta-Baba, R., Bel-Kadhi, S. M. (2023a). Biochemical characterization of local onion genotypes (Allium cepa L.) in the arid regions of Tunisia. Polish Journal of Environmental Studies, 32, 15-26.
- Chalbi, A., Chikh-Rouhou, H., Mezghani, N., Slim, A., Fayos, O., Bel-Kadhi, M.S., Garcés-Claver, A. (2023b). Genetic diversity analysis of Onion (Allium cepa L.) from the arid region of Tunisia using phenotypic traits and SSR markers. Horticulturae, 9 (10), 1098. https://doi.org/10.3390/horticulturae9101098
- Chaparro, J. M., Badri, D. V., Bakker, M. G., Sugiyama, A., Manter, D. K., & Vivanco, J. M. (2013). Correction: root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE, 8, 1-10. https://doi.org/10.1371/journal.pone.0055731
- Chen, X., Krug, L., Yang, M., Berg, G. & Cernava, T. (2021). The Himalayan onion (Allium wallichii Kunth) harbors unique spatially organized bacterial communities. Microbial Ecology, 82, 909-918. https://doi.org/10.1007/s00248-021-01728-5
- Chen, L., & Liu, Y. (2024). The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology, 13, 95-103. https://doi.org/10.3390/biology13020095
- Colo, J., Hajnal-Jafari, T. I., Durić, S., Stamenov, D. & Hamidović, S. (2014). Plant growth promotion rhizobacteria in onion production. Polish Journal of Microbiology, 63, 83-8.
- Cueva, C., Moreno-Arribas, M. V., Martín-Álvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodríguez, J. M., & Bartolomé, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 161, 372-382. https://doi.org/10.1016/j.resmic.2010.04.006
- De-la-Peña, C., Badri, D. V., Lei, Z., Watson, B. S., Brandão, M. M., Silva-Filho, M. C., Sumner, L. W., & Vivanco, J. M. (2010). Root secretion of defense-related proteins is development-dependent and correlated with flowering time. Journal of Biological Chemistry, 285, 30654-30665. https://doi.org/10.1074/jbc.M110.119040
- Dlamini, S. P., Akanmu, A. O., & Babalola, O. O. (2022). Rhizospheric microorganisms: The gateway to a sustainable plant health. Frontiers in Sustainable Food Systems, 6, 1-17.
- Du, J., Li, Y., Yin, Z., Wang, H., Zhang, X., & Ding, X. (2020). High-throughput customization of plant microbiomes for sustainable agriculture. Frontiers in Plant Science, 11, 1-9. https://doi.org/10.3389/fpls.2020.569742
- Fao stat, (2019). Food and Agriculture Organization of the United Nations-FAO Statistics Division. http://www.fao.org.
- Gschwendtner, S., Esperschütz, J., Buegger, F., Reichmann, M., Müller, M., Munch, J. C., Schloter, M. (2011). Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiology Ecology, 76, 564-575. https://doi.org/10.1111/j.1574-6941.2011.01073.x
- Hung, L., & Rutgers, S. (2016). Application of Aspergillus in plant growth promotion. New and future developments in microbial biotechnology and bioengineering. In V. K. Gupta (Ed.), Aspergillus system properties and applications (pp. 223˗227). Elsevier, New York.
- Li, J., Wang, C., Liang, W., & Liu, S. (2021). Rhizosphere microbiome: The emerging barrier in plant-pathogen interactions. Frontiers in Microbiology, 12, 1-9.
- Moloto, M. V. (2022). Seedborne bacteria of onion: a study on pathogenicity and diversity. Thesis, University of Pretoria, 173 p.
- Nuijten, E., Lazzaro, M., Costanzo, A., Chable, V., Annicchiarico, P., Burruezo, A. R., Kölling, A., & Messmer, M. (2020). Innovative organic breeding concepts: challenges and examples. Liveseed, European Union Horizon 2020, 95 p.
- Ochar, K., & Kim, S. H. (2023). Conservation and global distribution of onion (Allium cepa L.) germplasm for agricultural sustainability. Plants, 12, 1-19. https://doi.org/10.3390/ plants12183294
- Prisa, D. (2023). Role of microorganisms in communication between soil and plants. Karbala International Journal of Modern Science, 9, 160-167.
- Richardson, A. E., Kawasaki, A., Condron, L. M., Ryan, P. R., & Gupta, V. V. (2021). Root microbiome structure and microbial succession in the rhizosphere. In V. V. S. R. Gupta, A. K. Sharma, (Eds.), Rhizosphere biology: Interactions between microbes and plants (pp. 109-128). Springer, Singapore.
- Sun, Y., Chen, L., Zhang, S., Miao, Y., Zhang, Y., Li, Z., Zhao, J., Yu, L., Zhang, J., Qin, X., & Yao, Y. (2022). Plant interaction patterns shape the soil microbial community and nutrient cycling in different intercropping scenarios of aromatic plant species. Frontiers in Microbiology, 13, 1-19. https://doi.org/10.3389/fmicb.2022.888789
- Tian, L., Lin, X., Tian, J., Ji, L., Chen, Y., Tran, L. S. P. & Tian, C. (2020). Research advances of beneficial microbiota associated with crop plants. International Journal of Molecular Sciences, 21, 1-18. https://doi.org/10.3390/ijms21051792
- Tinna, D., Garg, N., Sharma, S., & Chawla, N. (2020). Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions. Scientia Horticulturae, 270, 109432. https://doi.org/10.1016/j.scienta.2020.109432