
Published 2024-12-29
Keywords
- Steel slag,
- Growth,
- Capsicum annuum L,
- Photosynthetic pigments,
- Protein
- Nutritive elements ...More
How to Cite
Copyright (c) 2024 Oumaima Ouala, Yasser Essadki, Hicham Khalisse, Hassan Chagiri, Abdelilah Meddich , Fatima El Khalloufi, Brahim Oudra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The search for new approaches for sustainable and economic agricultural fertilization is becoming of great interest worldwide. The potential use of steel slag as a soil improver has been evaluated in this study to derive various benefits for agricultural cropping systems. Scanning electron microscopy (SEM), and inductively coupled plasma atomic emission spectroscopy (ICP-AES) confirmed their richness in minerals (Ca, Fe, Si, Mg, Mn, S, and P) beneficial for plant growth. In this regard, the objective of this study was to evaluate the effect of steel slag on the growth of Capsicum annuum L. plants. Three concentrations of slag (5, 20, and 30 g kg-1) were applied. Chlorophylls, carotenoids, mineral elements, and proteins content were then evaluated. The application of slag at 20 g kg-1 generated significant results on the growth parameters, namely, length of shoot (40.16 cm), root (22.16 cm), number of leaves (14 per plant), internodes (15 per plant), flowers and dry weights. Thus, this treatment allows the plants to reach fructification and form fruits of good nutritional quality as compared to the negative and positive (NPK fertilizer) control treatments. The application of the studied steel slag specifically at the concentration of 20 g kg-1 induced an increase in photosynthetic pigments (35.32 mg g-1 FW of total chlorophyll and 7.26 mg g-1 FW of carotenoids), essential elements (N, P, K and Ca) and a high level of proteins compared to the controls. The slag showed an improvement on C. annuum development and could be proposed as potential plant fertilizer to enhance crop productivity. Overall, the study confirms the importance of adopting appropriate sustainable practices when spreading slag on agricultural soils and monitoring its potential impact on the environment, particularly the risk of long-term metal release.
References
- Adeniyan, O., & Ojeniyi, S. (2005). Effect of poultry manure, NPK 15-15-15 and combination of their reduced levels on maize growth and soil chemical properties. Nigerian Journal of Soil Science, 15(1), 34–41.
- Ahmad, R., Alqathama, A., Aldholmi, M., Riaz, M., Abdalla, A. N., Mostafa, A., Al-Said, H. M., Alqarni, A. M., Ullah, R., Asgher, S. S., Amir, M., Shaaban, H., & Ahmad, W. (2022). Gas Chromatography-Mass Spectrometry (GC-MS) Metabolites Profiling and Biological Activities of Various Capsicum annum cultivars. Plants, 11(8). https://doi.org/10.3390/plants11081022
- Akanni, D. I., Ojeniyi, S. O., & Awodun, M. A. (2011). Soil properties, growth yield and nutrient content of Maize, Pepper and Amaranthus as influenced by organic and organomineral fertilizer. In Journal of Agricultural Science and Technology, 11, 1074-1078.
- Ali, M. T., & Sedaghat Hoor, Shahram. (2007). Converter Slag as a Liming Agent in the Amelioration of Acidic Soils. International Journal of Agriculture & Biology, 9(5), 715–720. https://doi.org/10.1017/CBO9781107415324.004
- Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53(1), 1–20. https://doi.org/10.1186/s40659-020-00312-4
- Bouzoubaâ, Z., Lhaj, A., & Mimouni, A. (2009). Le Silicium ; le levier minéral indispensable pour une agriculture durable au Maroc. Symposium international «Agriculture durable en région méditerranéenne, p. 257-265.
- Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical biochemistry (Vol. 72).
- Branca, T. A., & Colla, V. (2012). Possible uses of steelmaking slag in agriculture: an overview. Material Recycling Trends and Perspectives. Material Recycling Trends and Perspectives. Ed. Dr. Dimitris Achilias (pp. 335–356).
- Branca, T. A., Colla, V., Algermissen, D., Granbom, H., Martini, U., Morillon, A., Pietruck, R., & Rosendahl, S. (2020). Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in europe. Metals, 10(3). https://doi.org/10.3390/met10030345
- Cai, S., Liu, B., Li, J., Zhang, Y., Zeng, Y., Wang, Y., & Liu, T. (2022). Biochemical Analysis and Toxicity Assessment of Utilization of Argon Oxygen Decarbonization Slag as a Mineral Fertilizer for Tall Fescue (Festuca arundinacea Schreb) Planting. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159286
- Chand, S., Paul, B., & Kumar, M. (2015). An Overview of Use of Linz-Donawitz (LD) Steel Slag in Agriculture. Current World Environment, 10(3), 975–984. https://doi.org/10.12944/cwe.10.3.29
- Council. 2019. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (text with EEA relevance). Journal of the European Union, 1–11
- Das, S., Galgo, S. J., Alam, M. A., Lee, J. G., Hwang, H. Y., Lee, C. H., & Kim, P. J. (2020a). Recycling of ferrous slag in agriculture: Potentials and challenges. In Critical Reviews in Environmental Science and Technology (Vol. 52, Issue 8, pp. 1247–1281). Taylor and Francis Ltd. https://doi.org/10.1080/10643389.2020.1853458
- Das, S., Gwon, H. S., Khan, M. I., Jeong, S. T., & Kim, P. J. (2020b). Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63783-1
- Errouh, F., Aouabe, A. A., Sadouki, A., Chagiri, H., Khalisse, H., Oudra, B., ... & Meddich, A. (2023). Effects of Slag-Based Fertilizer to Mitigate Salinity Stress on Greenhouse Durum Wheat (Triticum Durum Desf.) Cultivars. ESI Preprints, 14, 301-301. https://doi.org/10.19044/esipreprint.2.2023.p300
- Gao, D., Wang, F. P., Wang, Y. T., & Zeng, Y. N. (2020). Sustainable utilization of steel slag from traditional industry and agriculture to catalysis. Sustainability (Switzerland), 12(21), 1–9. https://doi.org/10.3390/su12219295
- Gencel, O., Karadag, O., Oren, O. H., & Bilir, T. (2021). Steel slag and its applications in cement and concrete technology: A review. Construction and Building Materials, 283. https://doi.org/10.1016/j.conbuildmat.2021.122783
- Ghisman, V., Muresan, A. C., Buruiana, D. L., & Axente, E. R. (2022). Waste slag benefits for correction of soil acidity. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-20528-6
- Guo, J., Bao, Y., & Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste Management, 78, 318–330. https://doi.org/10.1016/j.wasman.2018.04.045
- Gutierrez, J., Hong, C. O., Lee, B. H., & Kim, P. J. (2010). Effect of steel-making slag as a soil amendment on arsenic uptake by radish (Raphanus sativa L.) in an upland soil. Biology and Fertility of Soils, 46(6), 617–623. https://doi.org/10.1007/s00374-010-0470-z
- Gwon, H. S., Khan, M. I., Alam, M. A., Das, S., & Kim, P. J. (2018). Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.). Journal of Hazardous Materials, 353(January), 236–243. https://doi.org/10.1016/j.jhazmat.2018.04.023
- Hartmut K. Lichtenthaler. (1987). ChlorolShylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, , 148, 350-382.
- Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit). http://hdl.handle.net/2027/uc2.ark:/13960/t51g1sb8j
- Isah, A. S., Amans, E. B., Odion, E. C., & Yusuf, A. A. (2014). Growth rate and yield of two tomato varieties (lycopersicon esculentum mill) under green manure and NPK fertilizer rate Samaru northern guinea savanna. International Journal of Agronomy, 2014. https://doi.org/10.1155/2014/932759
- Islam, Z. ., Tran, Q. T. ., Koizumi, S., Kato, F., Ito, K. ., Araki, K. S., & Kubo, M. (2022). Effect of Steel Slag on Soil Fertility and Plant Growth. Journal of Agricultural Chemistry and Environment, 11(3), 209-221.
- Kimio, I. T. O. (2015). Steelmaking Slag for Fertilizer Usage. Nippon Steel Sumitomo Metal Tech Rep, 109, 130-136.
- Lahrouni, M., Oufdou, K., Faghire, M., Peix, A., El Khalloufi, F., Vasconcelos, V., & Oudra, B. (2012). Cyanobacterial extracts containing microcystins affect the growth, nodulation process and nitrogen uptake of faba bean (Vicia faba L., Fabaceae). Ecotoxicology, 21(3), 681–687. https://doi.org/10.1007/s10646-011-0826-7
- Lee, Y. B., Hoon, C., Hwang, J. Y., Lee, I. B., & Kim, P. J. (2004). Enhancement of phosphate desorption by silicate in soils with salt accumulation. Soil Science and Plant Nutrition, 50(4), 493–499. https://doi.org/10.1080/00380768.2004.10408505
- Makino, A. (2003). Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth. In Soil Science and Plant Nutrition (Vol. 49, Issue 3, pp. 319–327). https://doi.org/10.1080/00380768.2003.10410016
- Meddich A, Sadouki A, ELYallouli NE, Chagiri H, Khalisse H, O. B. (2023). Performance of Slag-Based Fertilizers in Improving Durum Wheat Tolerance to Water Deficit. Gesunde Pflanzen DOI. 10.1007/S10343-023-00874-9.
- Negim, O., Eloifi, B., Mench, M., Bes, C., Gaste, H., Motelica-Heino, M., & Le Coustumer, P. (2010). Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a cu-contaminated soil. Soil and Sediment Contamination, 19(2), 174–187. https://doi.org/10.1080/15320380903548508
- Ning, D., Liang, Y., Song, A., Duan, A., & Liu, Z. (2016). In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environmental Science and Pollution Research, 23(23), 23638–23647. https://doi.org/10.1007/s11356-016-7588-y
- Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials, 213–214, 147–155. https://doi.org/10.1016/j.jhazmat.2012.01.074
- Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79(2 SPEC.ISS.), 131–143. https://doi.org/10.1016/j.still.2004.07.002
- Pahalvi, , H. N., Rafiya, L. ., Rashid, S. ., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, 1–20.
- Pereira, H. S., Gaspar, ;, Korndörfer, H., Anelisa De Aquino Vidal, ;, Mônica, ;, & De Camargo, S. (2004). SILICON SOURCES FOR RICE CROP. In Sci. Agric (Issue 5).
- Piatak, N. M., Seal, R. R., Hoppe, D. A., Green, C. J., & Buszka, P. M. (2019). Geochemical characterization of iron and steel slag and its potential to remove phosphate and neutralize acid. Minerals, 9(8), 1–26. https://doi.org/10.3390/min9080468
- Pietrini, F., Iori, V., Beone, T., Mirabile, D., & Zacchini, M. (2017). Effects of a ladle furnace slag added to soil on morpho-physiological and biochemical parameters of Amaranthus paniculatus L. plants. Journal of Hazardous Materials, 329, 339–347. https://doi.org/10.1016/j.jhazmat.2017.01.050
- Hiltunen, R., & Hiltunen, A. (2004, January). Environmental aspects of the utilization of steel industry slags. Proceedings of VII international conference on molten slags, fluxes and salts. The South African Institute of Mining and Metallurgy.
- Radić, S., Sandev, D., Maldini, K., Vujčić Bok, V., Lepeduš, H., & Domijan, A. M. (2022). Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.). Agronomy, 12(9). https://doi.org/10.3390/agronomy12092218
- Radlc, S., Crnojevic, H., Sandev, D., Lelic, S., Sedlar, Z., Glavasl, K., & Pevalek-Kozllna, B. (2013). Effect of electric arc furnace slag on growth and physlology of malze (zea mays l.). In Acta Biologica Hungarica (Vol. 64, Issue 4).
- Sarwar, R. A., Ashraf, M., & Javaid, M. M. (2018). Response of foliar-applied nutrient solution with and without soil-applied fertilizers on growth and yield of mung bean. Journal of Plant Nutrition, 41(9), 1083–1093. https://doi.org/10.1080/01904167.2017.1381722
- Schlögl, S., Diendorfer, P., Baldermann, A., & Vollprecht, D. (2023). Use of industrial residues for heavy metals immobilization in contaminated site remediation: a brief review. International Journal of Environmental Science and Technology, 20(2), 2313–2326. https://doi.org/10.1007/s13762-022-04184-x
- Shabala, S. N., Shabala, S. I., Martynenko, A. I., Babourina, O., & Newman, I. A. (1998). Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. Australian Journal of Plant Physiology, 25(5), 609–616. https://doi.org/10.1071/PP97146
- Ilyushechkin, A. Y., Roberts, D. G., French, D., & Harris, D. J. (2012). IGCC solids disposal and utilisation, Final Report for ANLEC project 5-0710-0065.
- Wang, W., Sardans, J., Lai, D. Y. F., Wang, C., Zeng, C., Tong, C., Liang, Y., & Peñuelas, J. (2015). Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crops Research, 171(2015), 146–156. https://doi.org/10.1016/j.fcr.2014.10.014
- Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Bartrons, M., & Peñuelas, J. (2018). Steel slag amendement increases nutrient availability and rice yield in a subtropical paddy field in CHINA. Experimental Agriculture, 54(6), 842–856. https://doi.org/10.1017/S0014479717000412
- WANG, X., & CAI, Q. S. (2006). Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment1 1 Project supported by the National Natural Science Foundation of China (No. 30270800). Pedosphere, 16(4), 519–524. https://doi.org/10.1016/S1002-0160(06)60083-0
- Westerman, P. W., & Bicudo, J. R. (2005). Management considerations for organic waste use in agriculture. Bioresource Technology, 96(2), 215–221. https://doi.org/10.1016/j.biortech.2004.05.011
- Yan, P., Shen, C., Fan, L., Li, X., Zhang, L., Zhang, L., & Han, W. (2018). Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agriculture, Ecosystems and Environment, 254, 20–25. https://doi.org/10.1016/j.agee.2017.11.015
- Yang, R., Howe, J. A., & Golden, B. R. (2019). Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 205(4), 353–361. https://doi.org/10.1111/jac.12327
- Yavaş, İ., & Ünay, A. (2017). The Role of Silicon under Biotic and Abiotic Stress Conditions. Türkiye Tarımsal Araştırmalar Dergisi, 4(2), 204–209. https://doi.org/10.19159/tutad.300023
- Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An Overview of Utilization of Steel Slag. Procedia Environmental Sciences, 16, 791–801. https://doi.org/10.1016/j.proenv.2012.10.108
- Yildirim, I. Z., & Prezzi, M. (2011). Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering, 2011. https://doi.org/10.1155/2011/463638
- Zaki, N., Hakmaoui, A., Ouatmane, A., Hasib, A., & Fernández-Trujillo, J. P. (2013a). Bioactive components and antioxidant activity of Moroccan Paprika (Capsicum annuum L.) at different period of harvesting and processing. Journal of Biology, Agriculture and Healthcare, 3(8), 1-8.
- Zaki, N., Hasib, A., Hakmaoui, A., Dehbi, F., & Ouatmane, A. (2013). Assessment of color, capsaicinoids, carotenoids and fatty acids composition of paprika produced from Moroccan pepper cultivars (Capsicum annuum L.). Assessment, 3(7) .