Vol. 119 No. 1 (2025)
Research Papers

Forage crops status, determinants and constraints: Current status of improved forage crops, determinants and constraints on smallholders mixed crop-livestock farms in the semi-arid region of Algeria

Lounis Semara
Department of Agricultural Sciences. Mohamed El Bachir El Ibrahimi University, El-Anasser, Bou Arreridj. Algeria
Charefeddine Mouffok
Department of Agricultural Sciences, Ferhat Abbes University, Setif, Algeria
Farida Belkasmi
Department of Agricultural Sciences. Mohamed El Bachir El Ibrahimi University, El-Anasser, Bou Arreridj. Algeria

Published 2025-07-08

Keywords

  • Improved forage,
  • Cropping system,
  • Livestock system,
  • Feed autonomy,
  • Semi-arid

How to Cite

Semara, L., Mouffok, C., & Belkasmi, F. (2025). Forage crops status, determinants and constraints: Current status of improved forage crops, determinants and constraints on smallholders mixed crop-livestock farms in the semi-arid region of Algeria. Journal of Agriculture and Environment for International Development (JAEID), 119(1), 65–84. https://doi.org/10.36253/jaeid-15942

Abstract

In Algeria, forage crops face significant limitations, posing a challenge to the development of intensive livestock production. This study aims to understand the status, determinants, and constraints to the adoption of improved forage crops in mixed crop-livestock family farms in the province of Bordj Bou Arreridj, located in the semi-arid zone of eastern Algeria.  We conducted a survey on 98 farms using a semi-structured questionnaire in two different ago-pedoclimatic zones, and our analysis included the description of forage cropping modalities and the empirical modelling of the factors influencing the adopted patterns of forage crops. Our results showed that fodder crops cover almost 20% of the total arable land. However, the allocation of land to forage crops varied considerably between farms and zones. Cultivated forage crops included barley, oats, corn, sorghum, and alfalfa. The adoption of improved fodder crops was influenced by several structural and socio-economic factors, such as exploited farmland size, size of sheep livestock, family labor size, access and permanent availability of irrigation water, farming equipment, social network involvement, and agricultural training. The development of forage crops encountered various constraints, including issues of seed availability and cost, limited farmland, and insufficient irrigation water. To boost forage incorporation in local farming systems, it is imperative to raise farmers' awareness of the agronomic benefits of cultivating fodder crops. In addition, supporting farmers to improve their knowledge, farm structures, and equipment and providing seeds and fertilizers are crucial for the successful promotion of fodder crops.

References

  1. Abbas, K., & Abdelguerfi, A. (2005). Perspectives d’avenir de la jachère pâturée dans les zones céréalières semi-arides. Fourrages, 184, 533–546.
  2. Abbas, K., Mebarkia, A., & Mohguen, K. (2014). Performances of some fodder cultivars cultivated in pure stand or in association under semi-arid conditions of Algeria. In Forage resources and ecosystem services provided by Mountain and Mediterranean grasslands and rangelands (pp. 843). Zaragoza: CIHEAM/INRA/FAO/VetAgro Sup Clermont-Ferrand/Montpellier SupAgro. (Options Méditerranéennes: Série A. Séminaires Méditerranéens; No. 109). https://om.ciheam.org/ressources/om/pdf/a109/a109.pdf
  3. Abdeldjelil, M. C., Agabou, A., Boudebza, A., Messai, A., Aimeur, F., Bensegueni, A., & Benazzouz, H. (2013). Analysis of ruminants feeding systems in some Algerian farms: Obstacle to achieve autonomy. Options Méditerranéennes. Série A, Séminaires Méditerranéens, (107), 91–95. https://om.ciheam.org/web/controleurFrontal.php?action=afficherArticle&IDPDF=7016
  4. Abusuwar, A. O., & Ahmed, E. O. (2010). Seasonal variability in nutritive value of ruminant diets under open grazing system in the semi-arid rangeland of Sudan (South Darfur State). Agriculture and Biology Journal of North America, 1(3), 243–249. https://doi.org/10.5251/ABJNA.2010.1.3.243.249
  5. Achir, C., Annicchiarico, P., Pecetti, L., Khelifi, H. E., M'Hammedi-Bouzina, M., Abdelguerfi, A., & Laouar, M. (2020). Adaptation patterns of sixteen alfalfa (Medicago sativa L.) cultivars across contrasting environments of Algeria and implications for the crop improvement. Italian Journal of Agronomy, 15(1), 57–62. https://doi.org/10.4081/ija.2020.1578
  6. Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open Journal of Statistics, 5(7), 754–767. https://doi.org/10.4236/ojs.2015.57075
  7. Amad, A. A., & Zentek, J. (2023). The use of Moringa oleifera in ruminant feeding and its contribution to climate change mitigation. Frontiers in Animal Science, 4, 1137562. http://doi.org/10.3389/fanim.2023.1137562
  8. Amamou, H., Sassi, M. B., Aouadi, H., Khemiri, H., Mahouachi, M., Beckers, Y., & Hammami, H. (2018). Climate change-related risks and adaptation strategies as perceived in dairy cattle farming systems in Tunisia. Climate Risk Management, 20, 38–49. https://doi.org/10.1016/j.crm.2018.03.004
  9. Annicchiarico, P. (2017). Feed legumes for truly sustainable crop-animal systems. Italian Journal of Agronomy, 12(2). https://doi.org/10.4081/ija.2017.880
  10. Balabanli, C., Cirit, Y., Kayacan, S., Bıçakçı, E., & Yüksel, O. (2016). Determination of forage crops producer behaviour in agriculture; Example of Isparta Province. Journal of Central Research Institute for Field Crops, 25(2). https://doi.org/10.21566/tarbitderg.282817
  11. Bellingeri, A., Cabrera, V., Gallo, A., Liang, D., & Masoero, F. (2019). A survey of dairy cattle management, crop planning, and forages cost of production in Northern Italy. Italian Journal of Animal Science, 18(1), 786–798. https://doi.org/10.1080/1828051X.2019.1580153
  12. Benoit, M., & Veysset, P. (2021). Livestock unit calculation: A method based on energy needs to refine the study of livestock farming systems. INRAE Productions Animals, 33, 139–160. https://doi.org/10.20870/productions-animales.2021.34.2.4855
  13. Bir, A. (2019). Stratégies d’adaptation des éleveurs bovins laitiers aux contraintes climatiques dans la région semi-aride de Sétif, Algérie. Livestock Research for Rural Development, 31(7). https://www.lrrd.org/lrrd31/7/moh31104.html
  14. Birhanu, M. Y., Girma, A., & Puskur, R. (2017). Determinants of success and intensity of livestock feed technologies use in Ethiopia: Evidence from a positive deviance perspective. Technological Forecasting and Social Change, 115, 15–25. https://doi.org/10.1016/j.techfore.2016.09.010
  15. Boddey, R. M., Casagrande, D. R., Homem, B. G., & Alves, B. J. (2020). Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass and Forage Science, 75(4), 357–371. https://doi.org/10.1111/gfs.12498
  16. Bouzida, S., Ghozlane, F., Allane, M., Yakhlef, H., & Abdelguerfi, A. (2010). Impact du chargement et de la diversification fourragère sur la production des vaches laitières dans la région de Tizi-Ouzou (Algérie). Fourrages, 204, 269–275.
  17. Bybee-Finley, K. A., & Ryan, M. R. (2018). Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture, 8(6), 80. https://doi.org/10.3390/agriculture8060080
  18. Capstaff, N. M., & Miller, A. J. (2018). Improving the yield and nutritional quality of forage crops. Frontiers in Plant Science, 9, 338501. https://doi.org/10.3389/fpls.2018.00535
  19. Cevher, C., & Altunkaynak, B. (2020). Socioeconomic factors and sustainable forage crops production in Turkey Aegean Region: A multivariate modeling. Sustainability, 12(19), 8061. https://doi.org/10.3390/su12198061
  20. Cheng, M., McCarl, B., & Fei, C. (2022). Climate change and livestock production: A literature review. Atmosphere, 13(1), 140. https://doi.org/10.3390/atmos13010140
  21. Collins, M., Nelson, C.J., Moore, K.J., & Barnes, R. F.. (2018). Forages Volume I: An introduction to grassland agriculture (7th ed.). Hoboken, NJ: John Wiley & Sons.
  22. Dagar, J. C., Ghosh, P. K., Mohanta, S. K., Singh, J. B., Vijay, D., & Kumar, R. V. (2017). Potentials for fodder production in degraded lands. In P. K. Ghosh, S. K. Mohanta, J. B. Singh, D. Vijay, R. V. Kumar, V. K. Yadav, & S. Kumar (Eds.), Approaches towards fodder security in India (pp. 333–364). New Delhi: Studera Press.
  23. Davis, H., Chatzidimitriou, E., Leifert, C., & Butler, G. (2020). Evidence that forage-fed cows can enhance milk quality. Sustainability, 12(9), 3688. https://doi.org/10.3390/su12093688
  24. Desta, A. G. (2022). Constraints of improved forage adoption in East Gojjam Zone, Ethiopia. Current Agriculture Research Journal, 10(2).
  25. http://dx.doi.org/10.12944/CARJ.10.2.07
  26. Devendra, C., & Thomas, D. (2002). Crop–animal interactions in mixed farming systems in Asia. Agricultural Systems, 71(1–2), 27–40. https://doi.org/10.1016/S0308-521X (01)00034-8.
  27. Devendra, C., & Leng, R. A. (2011). Feed resources for animals in Asia: Issues, strategies for use, intensification and integration for increased productivity. Asian-Australasian Journal of Animal Sciences, 24(3), 303–321. https://doi.org/10.5713/ajas.2011.r.05
  28. Díaz de Otálora, X., Dragoni, F., Del Prado, A., Estellés, F., Wilfart, A., Krol, D., ... & Amon, B. (2022). Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe. Agronomy for Sustainable Development, 42(5), 94. https://doi.org/10.1007/s13593-022-00830-3
  29. Dos Santos, N. Z., Dieckow, J., Bayer, C., Molin, R., Favaretto, N., Pauletti, V., & Piva, J. T. (2011). Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil and Tillage Research, 111(2), 208–218. https://doi.org/10.1016/j.still.2010.10.008
  30. Entz, M. H., Baron, V. S., Carr, P. M., Meyer, D. W., Smith, S. R. Jr., & McCaughey, W. P. (2002). Potential of forages to diversify cropping systems in the Northern Great Plains. Agronomy Journal, 94(2), 240–250. https://doi.org/10.2134/agronj2002.2400
  31. Ergon, Å., Seddaiu, G., Korhonen, P., Virkajärvi, P., Bellocchi, G., Jørgensen, M., ... & Volaire, F. (2018). How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change? European Journal of Agronomy, 92, 97–106. https://doi.org/10.1016/j.eja.2017.09.016
  32. Fenetahun, Y., Xu, X., & Wang, Y. (2019). Determinants of pastoral communities for adoption of forage production technology in Yabello rangeland, Southern Ethiopia. Journal of Ecology and the Natural Environment, 11(8). https://doi.org/10.5897/JENE2019.0771
  33. Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (2014). Conservation of grass and forage crops. In Lockhart & Wiseman’s crop husbandry including grassland (9th ed., pp. 513–526). Woodhead Publishing Series in Food Science, Technology and Nutrition. https://doi.org/10.1533/9781782423928.4.513
  34. Franzluebbers, A. J., & Martin, G. (2022). Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. Grass and Forage Science, 77(4), 270–281. https://doi.org/10.1111/gfs.12592
  35. Fuglie, K., Peters, M., & Burkart, S. (2021). The extent and economic significance of cultivated forage crops in developing countries. Frontiers in Sustainable Food Systems, 5, 712136. https://doi.org/10.3389/fsufs.2021.712136
  36. Gebremedhin, B., Ahmed, M., & Ehui, S. (2003). Determinants of adoption of improved forage technologies in crop–livestock mixed systems: Evidence from the highlands of Ethiopia. Tropical Grasslands, 37, 262–273. https://hdl.handle.net/10568/27820
  37. Ghozlane, M., Boukhechem, S., & Bouamra, M. (2021). Feed autonomy of a few dairy cattle farms in the Mitidja Plain (Algeria). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 78(1). https://doi.org/10.15835/buasvmcn-vm:2021.0003
  38. Gilhaus, K., & Hölzel, N. (2016). Seasonal variations of fodder quality and availability as constraints for stocking rates in year-round grazing schemes. Agriculture, Ecosystems & Environment, 234, 5–15. https://doi.org/10.1016/j.agee.2016.03.013
  39. Giridhar, K., & Samireddypalle, A. (2015). Impact of climate change on forage availability for livestock. In V. Sejian, J. Gaughan, L. Baumgard, & C. Prasad (Eds.), Climate change impact on livestock: Adaptation and mitigation (pp. 115–129). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_7
  40. Grover, D. K., & Kumar, S. (2012). Economics of production, processing and marketing of fodder crops in India. Agro-Economic Research Centre, Punjab Agricultural University, Ludhiana. https://aercpau.com/assets/docs/FODDER_INDIA41.pdf
  41. Gunasekaran, S., Bandeswaran, C., & Valli, C. (2019). Low-cost hydroponic fodder production technology for sustainable livestock farming during fodder scarcity. Current Science, 116(4), 526–528. https://www.jstor.org/stable/27137893
  42. Guyader, J., Janzen, H. H., Kroebel, R., & Beauchemin, K. A. (2016). Forage use to improve environmental sustainability of ruminant production. Journal of Animal Science, 94(8), 3147–3158. https://doi.org/10.2527/jas.2015-0141
  43. Harris‐Coble, L., Balehegn, M., Adesogan, A. T., & Colverson, K. (2022). Gender and livestock feed research in developing countries : A review. Agronomy Journal, 114(1), 259–276. https://doi.org/10.1002/agj2.20875
  44. Henzell, E. F. (2019). Contribution of forages to worldwide food production : Now and in the future. In Proceedings of the XIV International Grassland Congress (pp. 42–47). CRC Press. https://doi.org/10.1201/9780429303142
  45. Junca Paredes, J. J., Florez, J. F., Enciso Valencia, K. J., Hernández Mahecha, L. M., Triana Ángel, N., & Burkart, S. (2023). Potential forage hybrid markets for enhancing sustainability and food security in East Africa. Foods, 12(8), 1607. https://doi.org/10.3390/foods12081607
  46. Kadi, S. A., & Djellal, F. (2009). Autonomie alimentaire des exploitations laitières dans la région de Tizi-Ouzou, Algérie. Livestock Research for Rural Development, 21(12). https://lrrd.cipav.org.co/lrrd21/12/kadi21182.htm
  47. Klein, H. D., Rippstein, G., Huguenin, J., Toutain, B., & Guerin, H. (2014). Les cultures fourragères. Éditions Quae. Paris, France. 264 p.
  48. Koudahe, K., Allen, S. C., & Djaman, K. (2022). Critical review of the impact of cover crops on soil properties. International Soil and Water Conservation Research, 10(3), 343–354. https://doi.org/10.1016/j.iswcr.2022.03.003
  49. Lapar, M. L. A., & Ehui, S. K. (2004). Factors affecting adoption of dual-purpose forages in the Philippine uplands. Agricultural Systems, 81(2), 95–114. https://doi.org/10.1016/j.agsy.2003.09.003
  50. Mahmah, S., Mebarkia, A., & Rekik, F. (2023). A comparative study on narbon vetch and common vetch in the semi-arid region of Setif (Algeria). Journal of Agricultural Sciences, Belgrade, 68(3), 263–282. https://doi.org/10.2298/JAS2303263M
  51. Makkar, H. P. S. (2012). Feed and fodder challenges for Asia and the Pacific. In V. Ahuja (Ed.), Asian livestock: challenges, opportunities and the response. Proceedings of an international policy forum, Bangkok, Thailand, 16–17 August 2012 (pp. 81–96). FAO: Bangkok, Thailand.
  52. Makkar, H. P. (2016). Smart livestock feeding strategies for harvesting triple gain–the desired outcomes in planet, people and profit dimensions: a developing country perspective. Animal Production Science, 56(3), 519–534. https://doi.org/10.1071/AN15557
  53. Martens, J. R. T., Entz, M. H., & Wonneck, M. D. (2015). Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Canadian Journal of Plant Science, 95(6), 1049–1072. https://doi.org/10.4141/cjps-2014-173
  54. Mebarkia, A., Bougrine, H., Badache, F., & Mahmah, S. (2020). Etude de la production et de la phénologie de dix variétés de Vesce (vicia) du réseau maghrébin dans les hautes plaines Sétifiennes (Algérie). Fourrages, 241, 57–64.
  55. Mechri, M., Patil, S. B., Saidi, W., Hajri, R., Jarrahi, T., Gharbi, A., & Jedidi, N. (2016). Soil organic carbon and nitrogen status under fallow and cereal-legume species in a Tunisian semi-arid conditions. European Journal of Earth and Environment, 3(1).
  56. Mefti, M., Bouzerzour, H., Francia, E., Ulrici, A., Abdelguerfi, A., Barre, P., & Pecchioni, N. (2016). Agronomic and molecular evaluation of cocksfoot and tall fescue cultivars for adaptation to an Algerian drought-prone environment. Euphytica, 212, 371–386. https://doi.org/10.1007/10.1007/s10681-016-1762-7
  57. Mengistu, A., Assefa, G., Kebede, G., & Feyissa, F. (2016). Review on the evolution of forage seed production in Ethiopia: Experiences, constraints and options. Academic Research Journal of Agricultural Science and Research, 4(6), 231–240. https://doi.org/10.14662/ARJASR2016.023
  58. Mengistu, A., Kebede, G., Feyissa, F., & Assefa, G. (2017). Review on major feed resources in Ethiopia: Conditions, challenges and opportunities. Academic Research Journal of Agricultural Science and Research, 5(3), 176–185. https://doi.org/10.14662/ARJASR2017.013
  59. Mengistu, S., Nurfeta, A., Tolera, A., Bezabih, M., Adie, A., Wolde-Meskel, E., & Zenebe, M. (2021). Livestock production challenges and improved forage production efforts in the Damot Gale District of Wolaita Zone, Ethiopia. Advances in Agriculture, 1–10. https://doi.org/10.1155/2021/5553659
  60. Morrison, R., Teufel, N., Duncan, A., & Barnes, A. (2023). An innovation systems approach to understanding forage adoption intensity in the dairy systems of Kenya and Ethiopia. Outlook on Agriculture, 52(4), 371–381. https://doi.org/10.1177/00307270231171712
  61. Musalia, L. M., Odilla, G. A., Nderi, O. M., & Muleke, V. (2016). Current status of fodder production, conservation and marketing in the arid and semi-arid lands of Tharaka Nithi County, Kenya. African Journal of Agricultural Research, 11(26), 2337–2347. https://doi.org/10.5897/AJAR2016.11162
  62. Mustafa, T. A. N., & Yolcu, H. (2021). Current status of forage crops cultivation and strategies for the future in Turkey: A review. Journal of Agricultural Sciences, 27(2), 114–121. https://doi.org/10.15832/ankutbd.903732
  63. Mutimura, M., Ebong, C., Rao, I. M., & Nsahlai, I. V. (2019). Seasonal variation of livestock feed resources in semi-arid and humid environments of Rwanda. East African Agricultural and Forestry Journal, 83(2), 137–148. https://doi.org/10.1080/00128325.2019.1603578
  64. Nhundu, T., Mutandwa, E., Stark, J., Chamboko, T., & Vambe, A. T. (2023). Determinants of smallholder livestock farmers’ adoption decisions of improved fodder technologies in Insiza District. African Journal of Science, Technology, Innovation and Development, 15(7), 805–816. https://doi.org/10.1080/20421338.2023.2196199
  65. Njarui, D. M., Gatheru, M., Gichangi, E. M., Nyambati, E. M., Ondiko, C. N., & Ndungu-Magiroi, K. W. (2017). Determinants of forage adoption and production niches among smallholder farmers in Kenya. African Journal of Range & Forage Science, 34(3), 157–166. https://www.ajol.info/index.php/ajrfs/article/view/163037
  66. Notenbaert, A. M., Douxchamps, S., Villegas, D. M., Arango, J., Paul, B. K., Burkart, S., ... & Peters, M. (2021). Tapping into the environmental co-benefits of improved tropical forages for an agroecological transformation of livestock production systems. Frontiers in Sustainable Food Systems, 5, 742842. https://doi.org/10.3389/fsufs.2021.742842
  67. Omollo, E. O., Wasonga, O. V., Elhadi, M. Y., & Mnene, W. N. (2018). Determinants of pastoral and agro-pastoral households’ participation in fodder production in Makueni and Kajiado Counties, Kenya. Pastoralism, 8, 1–10.
  68. https://doi.org/10.1186/s13570-018-0113-9
  69. Partha, B., & Nagaratna, B. (2016). Socio-economic profile of perennial fodder growers and the constraints faced by them in cultivation. Journal of Farm Sciences, 29(4), 466–469
  70. Paul, B. K. (2019). At a crossroads: Potential impacts and trade-offs of improved livestock feeding and forages in smallholder-farming systems of East Africa (PhD thesis). Wageningen University, Wageningen, the Netherlands, 257 pages. https://doi.org/10.18174/497381
  71. Paul, B. K., Groot, J. C., Maass, B. L., Notenbaert, A. M., Herrero, M., & Tittonell, P. A. (2020). Improved feeding and forages at a crossroads: Farming systems approaches for sustainable livestock development in East Africa. Outlook on Agriculture, 49(1), 13–20. https://doi.org/10.1177/0030727020906170
  72. Peters, M., Herrero, M., Fisher, M., Erb, K. H., Rao, I., Subbarao, G. V., ... & Searchinger, T. (2013). Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions. Tropical Grasslands-Forrajes Tropicales, 1(2), 156–167. https://doi.org/10.17138/tgft
  73. Picasso, V. D., Berti, M., Cassida, K., Collier, S., Fang, D., Finan, A., ... & Williams, C. (2022). Diverse perennial circular forage systems are needed to foster resilience, ecosystem services, and socioeconomic benefits in agricultural landscapes. Grassland Research, 1(2), 123–130. https://doi.org/10.1002/glr2.12020
  74. Pushpanjali, R. K. S., Samuel, J., Pankaj, P. K., Reddy, A. G. K., Rohit, J., & Reddy, K. S. (2022). Fodder grass strips for soil conservation and soil health. Chemistry Proceedings, 10(1), 58. https://doi.org/10.3390/IOCAG2022-12189
  75. Ramesh, P., Triveni, G., Sharma, G. R. K., Reddy, Y. R., & Singh, R. P. (2021). Socio-economic profile and constraints faced by dairy farmers in utilisation of fodder development scheme in Srikakulam district of Andhra Pradesh. Indian Journal of Extension Education, 57(3), 196–200.
  76. https://doi.org/10.5958/2454-552X.2021.00123.7
  77. Rao, I., Peters, M., Castro, A., Schultze-Kraft, R., White, D. S., Fisher, M., Miles, J., Lascano, C. E., Blümmel, M., Bungenstab, D., et al. (2015). Livestock Plus -The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Tropical Grasslands-Forrajes Tropicales, 3, 59–82. https://hdl.handle.net/10568/68840
  78. Rathod, P. (2017). Attitude of dairy farmers towards cultivation of green fodder crops in Bidar District of Karnataka. Indian Journal of Veterinary Sciences and Biotechnology, 12(3), 152–156.
  79. Salo, S., Tadesse, G., & Haylemeskel, D. (2017). Survey on constraints of improved forage adoption in Anelemo Woreda, Hadiya Zone, Ethiopia. Agricultural Research and Technology: Open Access Journal, 12(2).
  80. Semara, L., Mouffok, C., & Madani, T. (2013). Livestock farming systems and cattle production orientation in eastern high plains of Algeria, cattle farming system in Algerian semi-arid region. International Journal of Agriculture Management and Development, 3(4), 237–244.
  81. Senoussi, A., & Behir, T. (2010). Étude des disponibilités des aliments de bétail dans les régions sahariennes. Cas de la région du Souf. Revue du Chercheur, 08. http://revues.univ-ouargla.dz/images/banners/ASTimages/elbahithimages/BAHIN08/R0814.pdf
  82. Shit, N. (2019). Hydroponic fodder production: An alternative technology for sustainable livestock production in India. Exploratory Animal & Medical Research, 9(2). https://www.cabidigitallibrary.org/doi/pdf/10.5555/20203435611
  83. Sidikou, A. A. H., Drissi, S., Bouaziz, A., Dhassi, K., Amlal, F., Darrhal, N., ... & Houssa, A. A. (2023). Productivity, quality, and nutrient uptake of intensive forage crop rotations based on corn in sandy soil (northern Morocco). Sains Tanah: Journal of Soil Science and Agroclimatology, 20(1), 32–42.
  84. Singh, D. N., Bohra, J. S., Tyagi, V., Singh, T., Banjara, T. R., & Gupta, G. (2022). A review of India’s fodder production status and opportunities. Grass and Forage Science, 77(1), 1–10. https://doi.org/10.1111/gfs.12561
  85. Singh, K. M., Meena, M. S., & Kumar, A. (2012). An economic view to forage and fodder production in eastern India. http://dx.doi.org/10.2139/ssrn.2030697
  86. Sofia, K., Sabrine, A. C. F., Nabil, A., Rofia, B., Mohamed, B., Nabil, B., & Chafia, C. (2023). Situation of forage crops intended for feeding dairy cattle in some breeding farms in the Wilaya of Blida (Algeria). Agricultural Science Digest, 43(6), 870–876. https://doi.org/10.18805/ag.DF-423
  87. Sraïri, M. T., Touzani, I., Le Gal, P. Y., & Kuper, M. (2008). In Kuper, M., & Zaïri, A. A. (Eds.), Économies d'eau en systèmes irrigués au Maghreb: Actes du 3e Atelier Régional, 4–8 juin 2007, Nabeul, Tunisie. Montpellier: CIRAD.
  88. Thornton, P. K. (2010). Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853–2867.
  89. Tionyele, F., Lankpitouo, J. P., Issouf, T., Souleymane, O., & Baba, O. (2022). Determinants of the adoption of forage crops in the rural municipality of Koumbia in Burkina Faso. International Journal of Agricultural Economics, 7(3), 140–145. https://doi.org/10.11648/j.ijae.20220703.15
  90. Tlahig, S., Neji, M., Atoui, A., Seddik, M., Dbara, M., Yahia, H., ... & Loumerem, M. (2024). Genetic and seasonal variation in forage quality of lucerne (Medicago sativa L.) for resilience to climate change in arid environments. Journal of Agriculture and Food Research, 15, 100986. https://doi.org/10.1016/j.jafr.2024.100986
  91. Tulu, D., Gadissa, S., Hundessa, F., & Kebede, E. (2023). Contribution of climate-smart forage and fodder production for sustainable livestock production and environment: Lessons and challenges from Ethiopia. Advances in Agriculture, 2023. https://doi.org/10.1155/2023/8067776
  92. Turinawe, A., Mugisha, J., & Kabirizi, J. (2012). Socio-economic evaluation of improved forage technologies in smallholder dairy cattle farming systems in Uganda. Journal of Agricultural Science, 4(3), 169–174. http://dx.doi.org/10.5539/jas.v4n3p163
  93. Ul-Allah, S., Khan, A. A., Burkert, A., & Wachendorf, M. (2014). Socio-economic aspects of fodder production in urban and peri-urban areas of Faisalabad. Pakistan Journal of Agricultural Sciences, 51(2).
  94. Vinita, S. S., Bala, A., Singh, U., Kumar, K., & Gautam, A. M. (2023). Socioeconomic profile of fodder production and feeding practices of dairy farmers: A study in Jind, Charkhidadri and Yamunanagar districts of Haryana. International Journal of Statistics and Applied Mathematics, SP-8(4), 193–197.
  95. Zekarias, B. (2016). Determinants of improved forages adoption in Doyogena district of Kembata Tembaro zone, in Southern Nations, Nationalities Regional State, Ethiopia. Global Journal of Science Frontier Research: Agriculture and Veterinary, 16(3).
  96. Zirmi-Zembri, N., & Kadi, S. A. (2016). Valeur nutritive des principales ressources fourragères utilisées en Algérie. 1-Les fourrages naturels herbacés. Livestock Research for Rural Development, 28(8). https://www.lrrd.org/lrrd28/8/zemb28145.html