Vol. 118 No. 2 (2024)
Research Papers

Spatial and temporal distribution of infiltration, curve number and runoff coefficients using TOPMODEL and SCS-CN models

Mohammad Hossein Pishvaei
Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
Shabnam Noroozpour
Young Researchers and Elite Club, Estahban Branch, Islamic Azad University, Estahban, Iran
Touraj Sabzevari
Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
Mostafa Akbari Kheirabadi
Department of civil engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
Andrea Petroselli
Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Viterbo, Italy

Published 2024-12-29

Keywords

  • Infiltration; Runoff coefficient; Curve number; TOPMODEL.

How to Cite

Pishvaei, M. H., Noroozpour, S., Sabzevari, T., Kheirabadi, M. A., & Petroselli, A. (2024). Spatial and temporal distribution of infiltration, curve number and runoff coefficients using TOPMODEL and SCS-CN models. Journal of Agriculture and Environment for International Development (JAEID), 118(2), 203–230. https://doi.org/10.36253/jaeid-15317

Abstract

Infiltration, the process by which water enters the soil, is intricately intertwined with the attributes of the catchment, including soil composition and vegetation cover, both of which exhibit temporal and spatial variability. Accurate quantification of infiltration rates is imperative for enhancing the predictive capabilities of rainfall-runoff models, especially in regions with limited hydrological monitoring infrastructure, such as many developing countries where a significant portion of catchments remains ungauged. In this study, we integrate the Soil Conservation Service Curve Number (SCS-CN) model with the TOPography-based hydrological MODEL (TOPMODEL) to derive a comprehensive framework for estimating the spatial and temporal dynamics of infiltration and its associated parameters. By leveraging the complementary strengths of these two models, we aim to enhance our understanding of infiltration processes across diverse landscapes. The amalgamation of the SCS-CN model with TOPMODEL Dynamic, which incorporates topographic features, contributing areas, and soil moisture deficit (SMD) dynamics within the watershed, represents a novel approach for characterizing the spatiotemporal variability of infiltration, curve number (CN), and runoff coefficient (RC). This integrated model offers a refined mathematical representation, capable of capturing the intricate interactions between land surface characteristics and hydrological processes, thereby advancing our ability to simulate and predict runoff responses in complex environmental settings.

References

  1. Adnan, R. M., Petroselli, A., Heddam, S., Guimarães Santos, C. A., & Kisi, O. (2021a). Comparison of different methodologies for rainfall-runoff modeling: machine learning vs conceptual approach. Natural Hazards, 105, 2987–3011.
  2. Adnan, R.M., Petroselli, A., Heddam, S., Guimarães Santos, C.A., & Kisi, O. (2021b). Short term rainfall-runoff modeling using several machine learning methods and a conceptual event-based model. Stochastic Environmental Research and Risk Assessment, 35, 597-616.
  3. Apollonio, C., Delle Rose, M., & Fidelibus, C. (2018). Water management problems in a karst flood-prone endorheic basin. Environmental Earth Sciences, 77, 676.
  4. Apollonio, C., Petroselli, A., Tauro, F., Cecconi, M., Biscarini, C., Zarotti, C., & Grimaldi, S. (2021). Hillslope erosion mitigation: An experimental proof of a nature-based solution. Sustainability, 13(11), 6058.
  5. Ayalew, D. W., Petroselli, A., De Luca, D. L., & Grimaldi, S. (2022). An evidence for enhancing the design hydrograph estimation for small and ungauged basins in Ethiopia. Journal of Hydrology: Regional Studies, 42, 101123.
  6. Azizian, A., & Shokoohi, A. (2015). Effects of data resolution and stream delineation threshold area on the results of a kinematic wave based GIUH model. Water SA, 41(1), 61-70.
  7. Azizian, A., & Shokoohi, A. (2019). Development of a new method for estimating SCS curve number using TOPMODEL concept of wetness index (case study: Kasilian and Jong watersheds, Iran). Acta Geophysica, 67(4), 1163-1177.
  8. Bales, J., & Betson, R. P. (1981). The curve number as a hydrologic index. In Rainfall-runoff relationships (pp. 371–386).
  9. Beven, K.J. (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.
  10. Beven, K.J. (1997). TOPMODEL: A critique. Hydrological Processes, 11, 1069-1085.
  11. Beven, K. J., & Wood, E. F. (1983). Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology, 65, 139-158.
  12. Beven, K. J. (1986). Runoff production and flood frequency in catchments of order n: An alternative approach. In V. K. Gupta, I. Rodriguez-Iturbe, & E. F. Wood (Eds.), Scale problems in hydrology. D. Reidel.
  13. Boughton, W. C. (1987). Evaluating partial areas of watershed runoff. Journal of Irrigation and Drainage Engineering, 113(3), 356-366.
  14. Carrillo, F., Soares, J. V., Ferreira, N. J., & Rodriguez, D. A. (2006). Runoff coefficient and its relation to phytogeography in Brazil. Proceedings of the 8th International Conference on Small Hydropower and Management of Water Resources (ICSHMO), Foz do Iguaçu, Brazil, April 24–28, 2006, 229–233.
  15. Cerdan, O., Le Bissonnais, Y., Govers, G., Lecomte, V., Van Oost, K., Couturier, A., ... & Dubreuil, N. (2004). Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of hydrology, 299(1-2), 4-14.
  16. Chairat, S., & Delleur, J. W. (1993). Integrating a physically based hydrological model with GRASS. IAHS Publications, 143, 143–143.
  17. Chow, V. T. (1964). Handbook of Applied Hydrology. McGraw-Hill.
  18. Crimaldi, M., & Lama, G. F. C. (2021). Impacts of riparian plants biomass assessed by UAV-acquired multispectral images on the hydrodynamics of vegetated streams. Proceedings of the 29th European Biomass Conference and Exhibition, 26–29 April 2021, Online, 1157–1161.
  19. Dos Reis Castro, N. M., Auzet, A. V., Chevallier, P., & Leprun, J. C. (1999). Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of Southern Brazil. Hydrological Processes, 13(11), 1621-1628.
  20. Eldridge, D. J., Wang, L., & Ruiz-Colmenero, M. (2015). Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology, 8(1), 83-93.
  21. Faouzi, E., Arioua, A., Hssaisoune, M., Boudhar, A., Elaloui, A., & Karaoui, I. (2022). Sensitivity analysis of CN using SCS-CN approach, rain gauges and TRMM satellite data assessment into HEC-HMS hydrological model in the upper basin of Oum Er Rbia, Morocco. Modeling Earth Systems and Environment, 8(4), 4707-4729.
  22. Fariborzi, H., Sabzevari, T., Noroozpour, S., & Mohammadpour, R. (2019). Prediction of the subsurface flow of hillslopes using a subsurface time-area model. Hydrogeology Journal, 27(4), 1401-1417.
  23. Franchini, M., Wendling, J., Obled, Ch., & Todini, E. (1996). Physical interpretation and sensitivity analysis of the TOPMODEL. Journal of Hydrology, 175, 293-338.
  24. Gottschalk, L., & Weingartner, R. (1998). Distribution of peak flow derived from a distribution of rainfall volume and runoff coefficient, and a unit hydrograph. Journal of hydrology, 208(3-4), 148-162.
  25. Gupta, V.K., Waymire, E., & Wang, C.T. (1980). Representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research, 16 (5), 855–862.
  26. Ismail, M. M., Abd-Ulkareem, F. A., & Hussain, T. A. (2021). Computation of Climatic Water Balance of AL-Sulaymania Meteorological Station for the Period 1980-2016, Kurdistan Region, Northeast of Iraq. Engineering and Technology Journal, 39(12), 1952-1959.
  27. Jaynes, D. B., & Hunsaker, D. J. (1989). Spatial and temporal variability of water content and infiltration on a flood irrigated field. Transactions of the ASAE, 32(4), 1229-1238.
  28. Lama, G. F. C., & Crimaldi, M. (2021). Assessing the role of gap fraction on the leaf area index (LAI) estimations of riparian vegetation based on fisheye lenses. Proceedings of the 29th European Biomass Conference and Exhibition, 26–29 April 2021, Online, 1172–1176.
  29. Lama, G. F. C., Crimaldi, M., De Vivo, A., Chirico, G. B., & Sarghini, F. (2021). Eco-hydrodynamic characterization of vegetated flows derived by UAV-based imagery. Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), 273–278.
  30. Lamb, R., Beven, K., & Myrabø, S. (1997). Discharge and water table predictions using a generalised TOPMODEL formulation. Hydrological Processes, 11(9), 1145-1167.
  31. Li, Z.J., & Zhang, K. (2008). Comparison of three GIS-based hydrological models. Journal of Hydrologic Engineering, 13(5), 364-370.
  32. Longobardi, A., Villani, P., Grayson, R. B., & Western, A. W. (2003). On the relationship between runoff coefficient and catchment initial conditions. Proceedings of MODSIM, 867–872.
  33. Merz, R., Blöschl, G., & Parajka, J. (2006). Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 331(3-4), 591-604.
  34. Merz, R., & Blöschl, G. (2009). A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, 45(1).
  35. Mesa, O. J., & Mifflin, E. R. (1986). On the relative role of hillslope and network geometry in hydrologic response. In V. K. Gupta, I. Rodriguez-Iturbe, & E. F. Wood (Eds.), Scale problems in hydrology (pp. 1–17). D. Reidel.
  36. McCuen, R. H. (1982). A guide to hydrologic analysis using SCS methods. Prentice-Hall.
  37. Michel, C., Vazken, A., & Perrin, C. (2005). Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resources Research, 41(2), 1–12.
  38. Mishra, S.K., Sahu, R.K., Eldho, T.I., & Jain, M.K. (2006). An improved I a S relation incorporating antecedent moisture in SCS-CN methodology. Water Resources Management, 20(5), 643-660.
  39. Montgomery, D.R., & Dietrich, W.E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153-1171.
  40. Mohammadpour, R., Ghani, A. A., Sabzevari, T., & Fared Murshed, M. (2021). Local scour around complex abutments. ISH Journal of Hydraulic Engineering, 27(sup1), 165-173.
  41. Nachabe, M. H. (2006). Equivalence between TOPMODEL and the NRCS curve number method in predicting variable runoff source areas 1. Journal of the American Water Resources Association, 42(1), 225-235.
  42. Naden, P. (1992). Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrological Sciences Journal, 37 (1), 53–71.
  43. Noto, S., Tauro, F., Petroselli, A., Apollonio, C., Botter, G., & Grimaldi, S. (2022). Low cost stage-camera system for continuous water level monitoring in ephemeral streams. Hydrological Sciences Journal 67(9), 1439-1448.
  44. Nourani, V., Roughani, A., & Gebremichael, M. (2011). TOPMODEL capability for rainfall-runoff modeling of the Ammameh watershed at different time scales using different terrain algorithms. Journal of Urban and Environmental Engineering, 5(1), 1-14.
  45. Ogbozige, F. J. (2022). Development of Intensity-Duration-Frequency (IDF) Models for Manually Operated Rain Gauge Catchment: A Case Study of Port Harcourt Metropolis Using 50 years Rainfall Data. Engineering and Technology Journal, 40(05), 627-635.
  46. Ou, Y. (2009). Hydrological modeling in the Marmot Creek basin (Doctoral dissertation, Memorial University of Newfoundland).
  47. Patil, S., & Bardossy, A. (2006). Regionalization of runoff coefficient and parameters of an event based Nash-cascade model for predictions in ungauged basins. Geophysical Research Abstracts, 8, 74.
  48. Panjabi, K., Rudra R., Goel P., Daggupati P., Kumar Shrestha N., Shukla R., Zhang B., & Allataifeh N. (2020). Mapping runoff generating areas using AGNPS-VSA model. Hydrological Sciences Journal, 65(13), 2224-2232.
  49. Petroselli, A., Asgharinia, S., Sabzevari, T., & Saghafian, B. (2020). Comparison of design hydrograph estimation methods for ungauged basins in Iran. Hydrological Sciences Journal, 65(1), 127-137.
  50. Pirone, D., Cimorelli, L., Del Giudice, G., & Pianese, D. (2022). Short-term rainfall forecasting using cumulative precipitation fields from station data: A probabilistic machine learning approach. Journal of Hydrology, 128, Article 128949.
  51. Pishvaei, M. H., Sabzevari, T., Noroozpour, S., & Mohammadpour, R. (2020). Effects of hillslope geometry on spatial infiltration using the TOPMODEL and SCS-CN models. Hydrological Sciences Journal, 65(2), 212-226.
  52. Quinn, P.F., Ostendorf, B., Beven, K., & Tenhunen, J. (1998). Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. Hydrology and Earth System Sciences, 2, 51-64.
  53. Rinaldo, A., Marani, A., & Rigon, R. (1991). Geomorphological dispersion. Water Resources Research, 27, 513–525.
  54. Rodriguez-Iturbe, I., & Valdes, J.B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15, 1409–1420.
  55. Rodriguez-Iturbe, I., Gonzalez-Sanabria, M., & Bras., R.L. (1982). A geomorphoclimatic theory on the instantaneous unit hydrograph. Water Resources Research, 18 (4),877–886.
  56. Rodríguez-Iturbe, I., & Rinaldo, A. (1997). Fractal river networks: chance and self-organization. Cambridge: Cambridge University Press.
  57. Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2012). Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57(3), 445-459.
  58. Soomro, A. G., Babar, M. M., Memon, A. H., Zaidi, A. Z., Ashraf, A., & Lund, J. (2019). Sensitivity of direct runoff to curve number using the SCS-CN method. Civ. Eng. J, 5, 2738-2746.
  59. Sabzevari, T., Ardakanian, R., Shamsaee, A., & Talebi, A. (2009). Estimation of flood hydrograph in no statistical watersheds using HEC-HMS model and GIS (Case study: Kasilian watershed). J. Water Eng, 4, 1-11.
  60. Sabzevari, T. (2010). Development of catchments geomorphological instantaneous unit hydrograph based on surface and subsurface flow response of complex hillslopes (Doctoral dissertation). Islamic Azad University.
  61. Sabzevari, T. (2017). Runoff prediction in ungauged catchments using the gamma dimensionless time-area method. Arabian Journal of Geosciences, 10, 1-11.
  62. Sherman, L. K. (1932). Streamflow from rainfall by the unit-graph method. Engineering News Record, 108, 501-505.
  63. Singh, P.K., Gaur, M.L., Mishra, S.K., & Rawat, S.S. (2010). An updated hydrological review on recent advancements in soil conservation service-curve number technique. Journal of Water and Climate Change, 1(2), 118-134.
  64. SCS, National engineering handbook. Hydrology Section, 4. (1972).
  65. Shokoohi, A. (2016). Effect of Data Resolution on Topographic Index and Performance of the Simi-Distributed Model: TOPMODEL. Modares Civil Engineering Journal, 16(2), 187-201.
  66. Sisi, L., Gitau, M., Engel, B.A., Zhang, L., Du, Y., Wallace C., & Flanagan, D.C. (2017). Development of a distributed hydrological model to facilitate watershed management. Hydrological Sciences Journal, 62(11), 1755-1771.
  67. Sivapalan, M., Beven, K., & Wood, E. F. (1987). On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resources Research, 23(12), 2266-2278.
  68. Son, N., & Bouvier C. (2019). Flood modelling using the distributed event-based SCS-LR model in the Mediterranean Real Collobrier catchment. Hydrological Sciences Journal, 64(11), 1351-1369.
  69. Stuart, N., & Stocks, C. (1993). Hydrological modelling within GIS: An integrated approach. IAHS Publication, 319, 319.
  70. Tauro, F., Petroselli, A., Porfiri, M., Giandomenico, L., Bernardi, G., Mele, F., ... & Grimaldi, S. (2016). A novel permanent gauge-cam station for surface-flow observations on the Tiber River. Geoscientific Instrumentation, Methods and Data Systems, 5(1), 241-251.
  71. Tricker, A. S. (1981). Spatial and temporal patterns of infiltration. Journal of Hydrology, 49(3-4), 261-277.
  72. Takeuchi, K., Hapuarachchi, P., Zhou, M., Ishidaira, H., & Magome, J. (2008). A BTOP model to extend TOPMODEL for distributed hydrological simulation of large basins. Hydrological Processes, 22(17), 3236–3251.
  73. Takeuchi, K., Tianqi, A., & Ishidaira H. (1999). Introduction of block-wise use of TOPMODEL and Muskingum-Cunge method for the hydroenvironmental simulation of a large ungauged basin. Hydrological Sciences Journal, 44(4), 633-646.
  74. Visessri, S., & McIntyre, N. (2016). Regionalisation of hydrological responses under land-use change and variable data quality. Hydrological Sciences Journal, 61(2), 302-320.
  75. Woods, R. A., Sivapalan, M., & Robinson, J. S. (1997). Modeling the spatial variability of subsurface runoff using a topographic index. Water Resources Research, 33(5), 1061-1073.
  76. Wang, G., Hapuarachchi, H. A. P., Takeuchi, K., & Ishidaira, H. (2010). Grid‐based distribution model for simulating runoff and soil erosion from a large‐scale river basin. Hydrological Processes: An International Journal, 24(5), 641-653.
  77. Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., & McMahon, T. A. (1999). Observed spatial organization of soil moisture and its relation to terrain indices. Water resources research, 35(3), 797-810.
  78. Wolock, D. M., & Price, C. V. (1994). Effects of digital elevation model map scale and data resolution on a topography‐based watershed model. Water Resources Research, 30(11), 3041-3052.