Vol. 119 No. 1 (2025)
Research Papers

Phytosociological study of herbaceous communities under Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr in eastern Niger

Ismael Bio
Higher Institute of Environment and Ecology, University of Diffa, Diffa, Niger
Mamadou Boubacar Moussa
Faculty of Agronomic and Ecological Sciences, University of Diffa, Diffa, Niger
Idrissa Soumana
National Institute of Agronomic Research of Niger, Niamey, Niger
Ali Mahamane
Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niamey, Niger

Published 2025-07-08

Keywords

  • Phytosociology,
  • Herbaceous communities,
  • Vachellia tortilis,
  • Vegetation dynamics,
  • Eastern Niger

How to Cite

Bio, I., Moussa, M. B., Soumana, I., & Mahamane, A. (2025). Phytosociological study of herbaceous communities under Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr in eastern Niger. Journal of Agriculture and Environment for International Development (JAEID), 119(1), 19–42. https://doi.org/10.36253/jaeid-14871

Abstract

The present study was conducted in eastern Niger with the objective of assessing the floristic diversity under the canopy of Vachellia tortilis. To collect detailed data on the plant species present, the sigmatist method of abundance-dominance of Braun-Blanquet was employed, which is a common phytosociological technique for determining the relative abundance and dominance of species in each area. This method helps classify species based on their frequency and coverage. A total of 138 plots were surveyed to ensure a comprehensive representation of the study area. These plots were distributed across various locations under the canopy of V. tortilis, covering diverse topographies and environmental conditions. Hierarchical Ascending Classification (HAC) was used to group plant species based on their similarities in abundance and presence across the plots. Detrended Correspondence Analysis (DCA) helped visualize the distribution of plant species in relation to environmental gradients such as soil type and moisture content, ensuring that plant groupings were not solely influenced by environmental variables. Canonical Correspondence Analysis (CCA) was employed to further explore the relationships between plant species and environmental factors, providing a deeper understanding of how plant communities are structured and influenced by both biotic and abiotic factors. The results revealed 5 plant groupings with a total species richness of 35 herbaceous species divided into 19 families. The analysis of the floristic composition shows that the Poaceae family (41.08%) is the most important, followed by the Mimosaceae (14.82%). The analysis of diversity indices shows that the greatest specific diversity is observed in the V. tortilis and Cenchrus biflorus grouping (22 species) with a Shannon index of 2.96 and a Piélou equitability of 0.83. The dominance of Poaceae under the V. tortilis canopy suggests that this tree species influences herbaceous community composition by creating favorable ecological conditions such as soil moisture retention and light availability.

References

  1. Abdourhamane, H., Morou, B., Rabiou, H., & Mahamane, A. (2013). Caractéristiques floristiques, diversité et structure de la végétation ligneuse dans le Centre-Sud du Niger : cas du complexe des forêts classées de Dan Kada Dodo-Dan Gado. International Journal of Biological and Chemical Sciences, 7(3), 1048-1068.
  2. Akpo, L. E., & Grouzis, M. (2009). Fonctionnement des écosystèmes sahéliens et impact des arbres sur la végétation herbacée. Sécheresse, 20(1), 456-472.
  3. Akpo, L.E., & Grouzis, M. (1993). Tree cover and its influence on herbaceous phytomass in the Sahelian zone of Senegal. Journal of Arid Environments, 25(1), 63–71
  4. Alhassane A, Soumana I, Karim S, Chaibou I, Mahamane A, Saadou M, (2017). Flore et végétation des parcours naturels de la région de Maradi, Niger. Journal of Animal & Plant Sciences. 34: 5354-5375.
  5. Amadou, L., Issa, R., & Adamou, M. (2018). Impact du surpâturage sur la diversité floristique et la résilience des écosystèmes sahéliens. Ecological Indicators, 93, 1083-1092.
  6. Bayala, J., Ouedraogo, M., & Sanon, A. (2021). Agro-silvo-pastoral systems and habitat heterogeneity in the Sahel. Agroforestry Systems, 95(3), 567–580.
  7. Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R., & Mwonga, S. M. (1993). The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology, 30(1), 143-155.
  8. Bernhard-Reversat, F. (1982). Soil enrichment under tree canopies in tropical savannas. Biogeochemistry, 1(3), 355–370.
  9. Bio, I., Rabiou, H., Soumana, I., Moussa, B. et Mahamane, A. (2021). Étude floristique des formations naturelles à Vachellia tortilis subsp. raddiana (Savi) brenan en zone sahélienne du Niger. Sciences Agronomiques et Vétérinaires. 9(2) :230-241.
  10. Braun-Blanquet, J. (1932). Plant Sociology: The Study of Plant Communities. McGraw-Hill Book Company, New York.
  11. CUD. (2016). Plan de developpement regional de Diffa, 2016. 274p
  12. Danjouma, I., Moussa, I., & Abdou, Y. (2024). Influence des arbres sur la diversité floristique dans la zone centrale de l'habitat des girafes au Niger. Biodiversity and Conservation, 33(2), 789-805.
  13. Diallo, A., Guisse, A., & Diouf, M. (2018). Influence des formations boisées sur la diversité floristique et la productivité des herbages dans le Ferlo (Sénégal). African Journal of Ecology, 56(4), 762-771.
  14. Diallo, A., Traoré, B., & Sissoko, M. (2015). Influence of tree canopies on the diversity of herbaceous species in semi‐arid regions. Journal of Arid Environments, 123(3), 45–56.
  15. Diallo, D., Akpo, L. E., Diatta, S., & Grouzis, M. (2006). Influence des arbres sur la régénération et la diversité spécifique des herbacées dans le Ferlo (Sénégal). Revue d'Écologie (Terre et Vie), 61, 21-32.
  16. Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K. A., & Hanan, N. P. (2013). Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. Journal of Ecology, 101(1), 202-209.
  17. Garg, S., Joshi, R. K., & Garkoti, S. C. (2022). Effect of tree canopy on herbaceous vegetation and soil characteristics in semi-arid forests of the Aravalli hills. Arid Land Research and Management, 36(2), 224–242.
  18. Hiernaux, P., Ayantunde, A., & Turner, M. D. (2016). Herbivory-driven succession in Sahelian ecosystems. Ecosystems, 19(5), 909–922.
  19. Idrissa, I., Morou, B., Abdourhamane, H., Karim, S., Abdourhamane, T., Djibo, I. et Mahamane, A. (2020). Diversité floristique et structure démographique des peuplements ligneux des parcours naturels sahéliens du Sud-Est du Niger : Cas de l'enclave pastorale « Dadaria » (Mainé-Soroa, Diffa). Journal international des sciences biologiques et chimiques, 14 (3), p.06.
  20. Idrissa, Y. M., Oumarou, H., & Souley, A. (2020). Rôle de Vachellia tortilis dans les systèmes agro-pastoraux sahéliens : services écosystémiques et défis de gestion. Agroforestry Systems, 94(6), 2087-2101.
  21. Johnson, E. A., Miyanishi, K., & Williams, B. (2021). The mosaic theory of arid ecosystem dynamics. Journal of Arid Environments, 185, 104345.
  22. Johnson, R. L., Smith, A. K., & White, P. D. (2017). Canopy effects on understory vegetation in semi‐arid ecosystems. Ecological Applications, 27(2), 134–145.
  23. Konaré, S., Boudsocq, S., Gignoux, J., Lata, J.-C., Raynaud, X., & Barot, S. (2021). Spatial heterogeneity in nitrification and soil exploration by trees favour source–sink dynamics in a humid savanna: A modelling approach. Functional Ecology, 35(4), 976–988.
  24. Lee, J., & Kim, Y. (2019). Soil drainage and nutrient retention in arid regions. Water, 11(10), 2073.
  25. Ludwig, F., de Kroon, H., Prins, H. H. T., & Berendse, F. (2004). The influence of savanna trees on nutrient, water and light availability and the understory vegetation. Plant Ecology, 170(1), 93-105.
  26. Mahamane, A., & Saadou, M. (2008). Méthodes d'étude et d'analyse de la flore et de la végétation tropicales. Actes de l'atelier sur l'harmonisation des méthodes, tenu à Niamey du 4 au 9 août 2008.
  27. Martinez, J., Lee, S., & Kim, H. (2021). Microhabitat formation and plant diversity under tree canopies in arid landscapes. Plant Ecology, 232(1), 89–102.
  28. Morou, B. (2010). Impacts de l’occupation des sols sur l’habitat de la girafe au Niger et enjeux pour la sauvegarde du dernier troupeau de girafes de l’Afrique de l’Ouest. Thèse de doctorat en Biologie Appliquée, Université Abdou Moumouni de Niamey, 231 p.
  29. Müller, S., Olagoke, A., Jeltsch, F., Tietjen, B., Berger, U., Ritter, H., & Maaß, S. (2023). Small-scale heterogeneity shapes grassland diversity in low-to-intermediate resource environments. Journal of Vegetation Science, 34(4), e13196. https://doi.org/10.1111/jvs.13196
  30. Ndiaye, O., Ba, M., & Diop, I. (2014). Floristic composition and tree–grass interactions in West African savannas. African Journal of Ecology, 52(1), 67–75.
  31. Oba, G., Stenseth, N. C., & Lusigi, W. J. (2000). New perspectives on sustainable grazing management in arid zones of sub-Saharan Africa. BioScience, 50(1), 35-51.
  32. Oumata, I., Mahamane, A., & Larwanou, M. (2020). Impact de Vachellia tortilis sur la diversité floristique et la production de phytomasse dans les écosystèmes sahéliens. Journal of Arid Environments, 178, 104146.
  33. Patel, R., Sharma, P., & Kumar, S. (2020). C4 photosynthesis and drought resistance mechanisms. Plant Science, 294, 110460.
  34. Pielou, E. C. (1966). The Measurement of Diversity in Different Types of Biological Collections. Journal of Theoretical Biology, 13(2), 131–144.
  35. Prince, S. D., Becker-Reshef, I., & Rishmawi, K. (2018). Long-term decline in rainfall and vegetation productivity in the Sahelian transition zone, 1982-2015. Remote Sensing of Environment, 204, 296-312.
  36. Rabiou H. (2016). Caractérisation des peuplements naturels de Pterocarpus erinaceus Poir. et élaboration de normes de gestion durable au Niger et au Burkina Faso (Afrique de l’Ouest). Thèse de doctorat en Biologie et écologie végétales, Université Dan Dicko Dan koulodo de Maradi, 212 p.
  37. Remigi, P., Faye, A., Kane, A., Deruaz, M., Thioulouse, J., Cissoko, M., Prin, Y., Galiana, A., Dreyfus, B. and Duponnois, R. (2008). The exotic legume tree species Acacia holosericea alters microbial soil functionalities and the structure of the arbuscular mycorrhizal community. Applied and Environmental Microbiology, 74 (5), 1485-1493.
  38. Scholes, R. J., & Archer, S. R. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28(1), 517-544.
  39. Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, USA, 144 p.
  40. Sileshi, G. W. (2016). The magnitude and spatial extent of influence of Faidherbia albida trees on soil properties and primary productivity in drylands. Journal of Arid Environments, 132, 1-14.
  41. Sorensen, T. (1948). A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Biologiske Skrifter, 5(4), 1–34.
  42. Soumana, I. (2011). Groupements végétaux pâturés des parcours de la région de Zinder et stratégies d’exploitation développées par les éleveurs Uda’en. Université Abdou Moumouni, 234p
  43. Thomas, D. S. G., & Nigam, S. (2018). Desertification, land degradation and climate change: trends, trajectories and challenges. Environmental Science & Policy, 88, 1-11.
  44. Thompson, J. R., Green, D. J., & Patel, S. (2018). Enhancing soil moisture and fertility through canopy shading in semi‐arid environments. Journal of Environmental Management, 218, 56–64.
  45. Trabucco, A., Zomer, R. J., & Van Straaten, O. (2023). Sand-binding root systems of psammophytic species in dune habitats. Journal of Arid Environments, 194, 104592.
  46. Walker, B. H., Ludwig, D., Holling, C. S., & Peterman, R. M. (1981). Stability of semi-arid savanna grazing systems. Journal of Ecology, 69(2), 473-498.
  47. Weltzin, J. F., & Coughenour, M. B. (1990). Savanna tree influence on understory vegetation and soil nutrients in northwestern Kenya. Journal of Vegetation Science, 1(3), 325-334.
  48. Whittaker, R.H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279–338.
  49. Yadeta, T., Veenendaal, E., Sykora, K., Tessema, Z. K., & Asefa, A. (2018). Effect of Vachellia tortilis on understory vegetation, herbaceous biomass, and soil nutrients along a grazing gradient in a semi-arid African savanna. Journal of Forestry Research, 29(6), 1601–1609.
  50. Zhou, L., Wang, Y., & Li, X. (2011). Overexpression of C4PEPC gene improves photosynthesis and drought tolerance in C3 plants. Journal of Experimental Botany, 62(15), 5407–5418.