Vol. 117 No. 2 (2023)
Reviews

Agroecological concepts and alternatives to the problems of contemporary agriculture: Monoculture and chemical fertilization in the context of climate change

Yassmine Elouattassi
Laboratory of Functional Ecology and Environmental Engineering, Department of Biology, Faculty of Sciences and Technique Fez, Université Sidi Mohamed Ben Abdellah, Fez, Morocco
Mohamed Ferioun
Microbial Biotechnology and Bioactive Molecules laboratory, Faculty of Sciences and Technique Fez, Université Sidi Mohamed Ben Abdellah, Fez-Morocco.
Bio
Naïma El Ghachtouli
Microbial Biotechnology and Bioactive Molecules laboratory, Faculty of Sciences and Technique Fez, Université Sidi Mohamed Ben Abdellah, Fez-Morocco.
Bio
Khalid Derraz
Laboratory of Functional Ecology and Environmental Engineering, Department of Biology, Faculty of Sciences and Technique Fez, Université Sidi Mohamed Ben Abdellah, Fez, Morocco
Bio
Fouad Rachidi
Department of Plant and Environment Protection, National School of Agriculture, Meknes, Morocco
Bio

Published 2023-12-29

Keywords

  • agriculture,
  • agroecology,
  • agroecosystem,
  • chemical fertilization,
  • Adoption of climate change,
  • monoculture
  • ...More
    Less

How to Cite

Elouattassi, Y., Ferioun, M., El Ghachtouli, N., Derraz, K., & Rachidi, F. (2023). Agroecological concepts and alternatives to the problems of contemporary agriculture: Monoculture and chemical fertilization in the context of climate change. Journal of Agriculture and Environment for International Development (JAEID), 117(2), 41–98. https://doi.org/10.36253/jaeid-14672

Abstract

The modernization of agriculture has transformed natural agrarian systems into other new conventional ones, making it possible to exponentially increase agricultural production. This leads to the destruction of ecological functions, and services, and has negative impacts on human health. This critical situation has given rise to a new model of agriculture called agroecology, which has emerged as a systemic approach that can understand the practices of traditional agricultural systems, as a scientific discipline that defines, classifies, and studies agrosystems from an ecological and socio-economic point of view.  This paper explores the major problems of agriculture, including climate change, monoculture, and chemical fertilization at the local, regional and global scale. Equally, we defined the different concepts that bring together the agroecological approach.  We based on agroecology as a scientific discipline, as a practice by defining the different agroecological practices and their scale of application, as well as the politico-economic aspect of this concept. Further, we have proposed the agroecological alternatives that can remedy the three problems recorded in the first section, based on several recent studies and research that can examine whether agroecological practices have positive results on monoculture, chemical fertilization, and climate changes. However, more advanced studies, using rigorous research design, such as case controls, longitudinal studies, and surveys in regions where agriculture is their main source of income, such as Morocco, are still needed. These investigations are suggested to fill the gap of data on such areas and fields of research.

 

References

  1. Abdelmajid, S., Mukhtar, A., Baig, M. B., & Reed, M. R. (2021). Climate Change, Agricultural Policy and Food Security in Morocco. In Emerging Challenges to Food Production and Security in Asia, Middle East, and Africa (pp. 171–196). Springer International Publishing. https://doi.org/10.1007/978-3-030-72987-5_7
  2. Abebe, T. G., Tamtam, M. R., Abebe, A. A., Abtemariam, K. A., Shigut, T. G., Dejen, Y. A., & Haile, E. G. (2022). Growing Use and Impacts of Chemical Fertilizers and Assessing Alternative Organic Fertilizer Sources in Ethiopia. Applied and Environmental Soil Science. https://doi.org/10.1155/2022/4738416
  3. Abedin, M. A., Collins, A. E., Habiba, U., & Shaw, R. (2019). Climate Change, Water Scarcity, and Health Adaptation in Southwestern Coastal Bangladesh. International Journal of Disaster Risk Science, 10(1), 28–42. https://doi.org/10.1007/S13753-018-0211-8/TABLES/3
  4. Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate Research, 11(1), 19–30. https://doi.org/10.3354/CR011019
  5. Adetunji, A. T., Ncube, B., Meyer, A. H., Olatunji, O. S., Mulidzi, R., & Lewu, F. B. (2021). Soil pH, nitrogen, phosphatase and urease activities in response to cover crop species, termination stage and termination method. Heliyon, 7(1). https://doi.org/10.1016/j.heliyon.2021.e05980
  6. Aguilera, E., Díaz-Gaona, C., García-Laureano, R., Reyes-Palomo, C., Guzmán, G. I., Ortolani, L., Sánchez-Rodríguez, M., & Rodríguez-Estévez, V. (2020). Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agricultural Systems, 181, 102809. https://doi.org/10.1016/j.agsy.2020.102809
  7. Aguilera, E., Lassaletta, L., Gattinger, A., & Gimeno, B. S. (2013). Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems & Environment, 168, 25–36. https://doi.org/10.1016/j.agee.2013.02.003
  8. Ahmad, D., & Afzal, M. (2021). Flood hazards, human displacement and food insecurity in rural riverine areas of Punjab, Pakistan: policy implications. Environmental Science and Pollution Research, 28(8), 10125–10139. https://doi.org/10.1007/S11356-020-11430-7/METRICS
  9. Al-Ansari, T., Korre, A., Nie, Z., & Shah, N. (2017). Integration of greenhouse gas control technologies within the energy, water and food nexus to enhance the environmental performance of food production systems. Journal of Cleaner Production, 162, 1592-1606. https://doi.org/10.1016/j.jclepro.2017.06.097
  10. Alaphilippe, A., Simon, S., Brun, L., Hayer, F., & Gaillard, G. (2013). Life cycle analysis reveals higher agroecological benefits of organic and low-input apple production. Agronomy for Sustainable Development, 33(3), 581–592. https://doi.org/10.1007/s13593-012-0124-7
  11. Alexandridis, N., Feit, B., Kihara, J., Luttermoser, T., May, W., Midega, C., Ingrid¨oborn, I. I., Poveda, K., Sileshi, G. W., Zewdie, B., Clough, Y., & Jonsson, M. (2023). Climate change and ecological intensification of agriculture in sub-Saharan Africa-A systems approach to predict maize yield under push-pull technology. Agriculture, Ecosystems & Environment, 352, 108511. https://doi.org/10.1016/j.agee.2023.108511
  12. Altieri, M. A. (1992). Agroecological foundations of alternative agriculture in California. Agriculture, Ecosystems & Environment, 39(1–2), 23–53. https://doi.org/10.1016/0167-8809(92)90203-N
  13. Altieri, M. A. (1995). Agroecology: the science of sustainable agriculture. Intermediate Technology Publications Ltd (ITP). https://repository.graduateinstitute.ch/record/82348/
  14. Altieri, M. A. (2009). Green deserts: Monocultures and their impacts on biodiversity. First published in December 2009, 67.
  15. Altieri, M. A. (2018). Agroecology: the science of sustainable agriculture. CRC Press.
  16. Altieri, M. A., & Nicholls, C. I. (2012). Agroecology Scaling Up for Food Sovereignty and Resiliency (pp. 1–29). https://doi.org/10.1007/978-94-007-5449-2_1
  17. Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. In Agronomy for Sustainable Development (Vol. 35, Issue 3, pp. 869–890). Springer-Verlag France. https://doi.org/10.1007/s13593-015-0285-2
  18. Altieri, M. A., Nicholls, C. I., & Montalba, R. (2017). Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability, 9(3). https://doi.org/10.3390/su9030349
  19. Ameur, F., Amichi, H., & Leauthaud, C. (2020). Agroecology in North African irrigated plains? Mapping promising practices and characterizing farmers’ underlying logics. Regional Environmental Change, 20(4). https://doi.org/10.1007/s10113-020-01719-1
  20. Anderson, C., Pimbert, M., & Kiss, C. (2015). Building, Defending and Strengthening Agroecology. A Global Struggle for Food Sovereignty. https://www.agroecologynow.com/wp-content/uploads/2015/05/Farming-Matters-Agroecology-EN.pdf
  21. Anderson, C. R., Maughan, C., & Pimbert, M. P. (2019). Transformative agroecology learning in Europe: building consciousness, skills and collective capacity for food sovereignty. Agriculture and Human Values, 36(3), 531–547. https://doi.org/10.1007/s10460-018-9894-0
  22. Andres, C., Comoé, H., Beerli, A., Schneider, M., Rist, S., & Jacobi, J. (2016). Cocoa in Monoculture and Dynamic Agroforestry (pp. 121–153). https://doi.org/10.1007/978-3-319-26777-7_3
  23. Anik, A. H., Sultan, M. B., Alam, M., Parvin, F., Ali, M. M., & Tareq, S. M. (2023). The impact of climate change on water resources and associated health risks in Bangladesh: A review. Water Security, 18, 100133. https://doi.org/10.1016/J.WASEC.2023.100133
  24. Ashraf, S., Iftikhar, M., Shahbaz, B., Khan, G. A., & Luqman, M. (2013). Impacts of flood on livelihoods and food security of rural communities: a case study of southern Punjab, Pakistan. Pakistan Journal of Agricultural Sciences, 50(4), 751–758.
  25. Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1–4), 83–89. https://doi.org/10.1007/s10661-008-0659-x
  26. Aubron, C., Noël, L., & Lasseur, J. (2016). Labor as a driver of changes in herd feeding patterns: Evidence from a diachronic approach in Mediterranean France and lessons for agroecology. Ecological Economics, 127, 68–79. https://doi.org/10.1016/j.ecolecon.2016.02.013
  27. Aziz, A., Ashraf, M., Sikandar, S., Asif, M., … N. A.-S., & Babar, B. H. (2019). Optimizing sulfur for improving salt tolerance of sunflower (Helianthus annuus L.). Soil Environ, 38, 222-233. https://doi.org/10.25252/SE/19/71647
  28. Bai, L., Cui, J., Jie, W., & Cai, B. (2015). Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiological Research, 180, 49–56. https://doi.org/10.1016/J.MICRES.2015.07.007
  29. Balgah, R. A. ;, Ngwa, K. A. ;, Buchenrieder, G. R. ;, Kimengsi, J. N., Balgah, R. A., Azibo Ngwa, K., Buchenrieder, G. R., & Kimengsi, J. N. (2023). Impacts of Floods on Agriculture-Dependent Livelihoods in Sub-Saharan Africa: An Assessment from Multiple Impacts of Floods on Agriculture-Dependent Livelihoods in Sub-Saharan Africa: An Assessment from Multiple Geo-Ecological Zones. Land, 12(334). https://doi.org/10.3390/land12020334
  30. Barrios, E., Gemmill-Herren, B., Bicksler, A., Siliprandi, E., Brathwaite, R., Moller, S., Batello, C., & Tittonell, P. (2020). The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosystems and People, 16, 1. https://doi.org/10.1080/26395916.2020.1808705
  31. Baul, T. K., & McDonald, M. (2015). Integration of Indigenous knowledge in addressing climate change. IJTK Vol.01(1) [January 2015], 1(1), 20–27. http://nopr.niscpr.res.in/handle/123456789/32021
  32. Bedoussac, L., Journet, E. P., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E. S., Prieur, L., & Justes, E. (2015). Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. In Agronomy for Sustainable Development (Vol. 35, Issue 3, pp. 911–935). Springer-Verlag. https://doi.org/10.1007/s13593-014-0277-7
  33. Begg, G. S., Cook, S. M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., Lövei, G. L., Mansion-Vaquie, A., Pell, J. K., Petit, S., Quesada, N., Ricci, B., Wratten, S. D., & Birch, A. N. E. (2017). A functional overview of conservation biological control. Crop Protection, 97, 145–158. https://doi.org/10.1016/j.cropro.2016.11.008
  34. Berdjour, A., Dugje, I. Y., Dzomeku, I. K., & Rahman, N. A. (2020). Maize–soybean intercropping effect on yield productivity, weed control and diversity in northern Ghana. Weed Biology and Management, 20(2), 69–81. https://doi.org/10.1111/wbm.12198
  35. Bezner Kerr, R., Madsen, S., Stüber, M., Liebert, J., Enloe, S., Borghino, N., Parros, P., Mutyambai, D. M., Prudhon, M., & Wezel, A. (2021). Can agroecology improve food security and nutrition? A review. In Global Food Security (Vol. 29). Elsevier B.V. https://doi.org/10.1016/j.gfs.2021.100540
  36. Bezner Kerr, R., Postigo, J. C., Smith, P., Cowie, A., Singh, P. K., Rivera-Ferre, M., Tirado-von der Pahlen, M. C., Campbell, D., & Neufeldt, H. (2023). Agroecology as a transformative approach to tackle climatic, food, and ecosystemic crises. Current Opinion in Environmental Sustainability, 62, 101275. https://doi.org/10.1016/J.COSUST.2023.101275
  37. Bezner Kerr, R., Young, S. L., Young, C., Santoso, M. V., Magalasi, M., Entz, M., Lupafya, E., Dakishoni, L., Morrone, V., Wolfe, D., & Snapp, S. S. (2019). Farming for change: developing a participatory curriculum on agroecology, nutrition, climate change and social equity in Malawi and Tanzania. Agriculture and Human Values, 36(3), 549–566. https://doi.org/10.1007/s10460-018-09906-x
  38. Bhattacharya, A. (2019). Changing environmental condition and phosphorus-use efficiency in plants. Changing Climate and Resource Use Efficiency in Plants, 241–305.
  39. Bi, Y., Zhou, P., Li, S., Wei, Y., Xiong, X., Shi, Y., Liu, N., & Zhang, Y. (2019). Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Research, 244. https://doi.org/10.1016/j.fcr.2019.107636
  40. Biber-Freudenberger, L., Ziemacki, J., Tonnang, H. E. Z., & Borgemeister, C. (2016). Future Risks of Pest Species under Changing Climatic Conditions. PLOS ONE, 11(4), e0153237. https://doi.org/10.1371/JOURNAL.PONE.0153237
  41. Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4). https://doi.org/10.1007/S42452-021-04521-8
  42. Bindraban, P. S., Dimkpa, C. O., & Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56(3), 299–317. https://doi.org/10.1007/S00374-019-01430-2
  43. Birkhofer, K., Bezemer, T. M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D., Ekelund, F., Fließbach, A., Gunst, L., & Hedlund, K. (2008). Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 40(9), 2297–2308. https://doi.org/https://doi.org/10.1016/j.soilbio.2008.05.007
  44. Bitew, Y., Alemayehu, G., Adego, E., & Assefa, A. (2019). Boosting land use efficiency, profitability and productivity of finger millet by intercropping with grain legumes. Cogent Food & Agriculture, 5(1), 1702826.
  45. Blary, C., Kerbiriou, C., Le Viol, I., & Barré, K. (2021). Assessing the importance of field margins for bat species and communities in intensive agricultural landscapes. Agriculture, Ecosystems & Environment, 319, 107494.
  46. Blessing, D. J., Gu, Y., Cao, M., Cui, Y., Wang, X., & Asante-Badu, B. (2022). Overview of the advantages and limitations of maize-soybean intercropping in sustainable agriculture and future prospects: A review. In Chilean Journal of Agricultural Research (Vol. 82, Issue 1, pp. 177–188). Instituto de Investigaciones Agropecuarias, INIA. https://doi.org/10.4067/S0718-58392022000100177
  47. Bohan, D. A., Raybould, A., Mulder, C., Woodward, G., Tamaddoni-Nezhad, A., Bluthgen, N., Pocock, M. J. O., Muggleton, S., Evans, D. M., Astegiano, J., Massol, F., Loeuille, N., Petit, S., & Macfadyen, S. (2013). Networking agroecology. integrating the diversity of agroecosystem interactions. In Advances in Ecological Research (Vol. 49, pp. 1–67). Academic Press Inc. https://doi.org/10.1016/B978-0-12-420002-9.00001-9
  48. Bonciarelli, U., Onofri, A., Benincasa, P., Farneselli, M., Guiducci, M., Pannacci, E., Tosti, G., & Tei, F. (2016). Long-term evaluation of productivity, stability and sustainability for cropping systems in Mediterranean rainfed conditions. European Journal of Agronomy, 77, 146–155. https://doi.org/10.1016/j.eja.2016.02.006
  49. Borrelli, L., Castelli, F., Ceotto, E., Cabassi, G., & Tomasoni, C. (2014). Maize grain and silage yield and yield stability in a long-term cropping system experiment in northern Italy. European Journal of Agronomy, 55, 12–19. https://doi.org/10.1016/j.eja.2013.12.006
  50. Bosc, P.-M., Berdegué, J., Goïta, M., van der Ploeg, J. D., Sekine, K., & Zhang, L. (2013). Investing in smallholder agriculture for food security. HLPE. https://edepot.wur.nl/265052
  51. Brito, J. M. C., Ferreira, D., Guerrero, C. A. C., Machado, A. V., & Beltrão, J. (2007). Soil pollution by nitrates using sewage sludge and mineral fertilizers. Improved Crop Quality by Nutrient Management, 223–227. https://doi.org/10.1007/978-0-585-37449-9_51
  52. Buchenrieder, G., Brandl, J., & Balgah, A. R. (2021). The Perception of Flood Risks: A Case Study of Babessi in Rural Cameroon. International Journal of Disaster Risk Science, 12(4), 1–21. https://doi.org/10.1007/S13753-021-00345-7/TABLES/6
  53. Bybee-Finley, K. A., & Ryan, M. R. (2018). Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture, 8, 1–24. https://doi.org/10.3390/agriculture8060080
  54. Canali, S., Ortolani, L., Campanelli, G., Robačer, M., von Fragstein, P., D’Oppido, D., & Kristensen, H. L. (2017). Yield, product quality and energy use in organic vegetable living mulch cropping systems: Research evidence and farmers’ perception. Renewable Agriculture and Food Systems, 32(3), 200–213. https://doi.org/10.1017/S1742170516000314
  55. Carpio, A. J., Castro, J., Mingo, V., & Tortosa, F. S. (2017). Herbaceous cover enhances the squamate reptile community in woody crops. Journal for Nature Conservation, 37, 31–38. https://doi.org/10.1016/j.jnc.2017.02.009
  56. Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., … Webster, N. S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 17(9), 569–586. https://doi.org/10.1038/s41579-019-0222-5
  57. Chen, X., Liang, Y., Wan, L., Xie, Z., Easton, C. D., Bourgeois, L., Wang, Z., Bao, Q., Zhu, Y., Tao, S., & Wang, H. (2019). Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. Chemical Engineering Science, 194, 36–44. https://doi.org/10.1016/j.ces.2018.04.004
  58. Chen, Y. F., Chen, W., Huang, X., Hu, X., Zhao, J. T., Gong, Q., Li, X. J., & Huang, X. L. (2013). Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation a micro-cross-section cultural system. Plant Pathology, 62(1), 112–119. https://doi.org/10.1111/j.1365-3059.2012.02620.x
  59. Chen, Y., Hu, S., Guo, Z., Cui, T., Zhang, L., Lu, C., Yu, Y., Luo, Z., Fu, H., & Jin, Y. (2021). Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing, China. Science of the Total Environment, 754. https://doi.org/10.1016/j.scitotenv.2020.142069
  60. Chien, F., Chau, K. Y., & Sadiq, M. (2023). Impact of climate mitigation technology and natural resource management on climate change in China. Resources Policy, 81, 103367. https://doi.org/10.1016/j.resourpol.2023.103367
  61. Chikte, P., Thakare, S. M., & Bhalkare, S. K. (2008). Influence of various cotton-based intercropping systems on population dynamics of thrips, Scircothrips dorsalis Hood and whitefly, Bemisia tabaci Genn. Research on crops, 9(3), 683–687.
  62. Cisneros-Saguilán, P., Gallardo-López, F., López-Ortíz, S., Ruiz Rosado, O., Herrera-Haro, J. G., & Hernández-Castro, E. (2015). Current Epistemological Perceptions of Sustainability and Its Application in the Study and Practice of Cattle Production: A Review. Agroecology and Sustainable Food Systems, 39(8), 885–906. https://doi.org/10.1080/21683565.2015.1050148
  63. Clapp, J. (2023). Concentration and crises: exploring the deep roots of vulnerability in the global industrial food system. The Journal of Peasant Studies, 50(1), 1–25. https://doi.org/10.1080/03066150.2022.2129013
  64. Clergue, B., Amiaud, B., Pervanchon, F., Lasserre-Joulin, F., & Plantureux, S. (2005). Biodiversity: Function and assessment in agricultural areas. A review. Agronomie, 25(1), 1–15. https://doi.org/10.1051/agro:2004049
  65. Cook, R. J. (2006). Toward cropping systems that enhance productivity and sustainability. Proceedings of the National Academy of Sciences, 103(49), 18389-18394. https://doi.org/doi10.1073pnas.0605946103
  66. Cooper, J., Baranski, M., Stewart, G., Nobel-de Lange, M., Bàrberi, P., Fließbach, A., Peigné, J., Berner, A., Brock, C., & Casagrande, M. (2016). Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agronomy for Sustainable Development, 36(1), 1–20. https://doi.org/https://doi.org/10.1007/s13593-016-0354-1
  67. Córdoba Vargas, C. A., Hortúa Romero, S., & León Sicard, T. (2020). Key points of resilience to climate change: a necessary debate from agroecological systems. Climate and Development, 12(6). 564–574. https://doi.org/10.1080/17565529.2019.1664376
  68. Cornu, P. (2021). La systémique agraire à l’INRA : Histoire d’une dissidence (Quae). https://library.oapen.org/bitstream/handle/20.500.12657/51624/1/9782759231768.pdf
  69. Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/EJSS.13010
  70. Coudrain, V., Hedde, M., Chauvat, M., Maron, P. A., Bourgeois, E., Mary, B., Léonard, J., Ekelund, F., Villenave, C., & Recous, S. (2016). Temporal differentiation of soil communities in response to arable crop management strategies. Agriculture, Ecosystems and Environment, 225, 12–21. https://doi.org/10.1016/j.agee.2016.03.029
  71. Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.-P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., & Paz, S. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972–980. https://doi.org/https://doi.org/10.1038/s41558-018-0299-2
  72. Cuartero, J., Pascual, J. A., Vivo, J.-M., Özbolat, O., Sánchez-Navarro, V., Egea-Cortines, M., Zornoza, R., Mena, M. M., Garcia, E., & Ros, M. (2022). A first-year melon/cowpea intercropping system improves soil nutrients and changes the soil microbial community. Agriculture, Ecosystems & Environment, 328, 107856. https://doi.org/10.1016/j.agee.2022.107856
  73. Cui, J., Liu, H., Wang, H., Wu, S., Bashir, M. A., Reis, S., Sun, Q., Xu, J., & Gu, B. (2023). Rice-Animal Co-Culture Systems Benefit Global Sustainable Intensification. Earth’s Future, 11(2), e2022EF002984. https://doi.org/10.1029/2022EF002984
  74. Dachraoui, M., & Sombrero, A. (2020). Effect of tillage systems and different rates of nitrogen fertilisation on the carbon footprint of irrigated maize in a semiarid area of Castile and Leon, Spain. Soil and Tillage Research, 196, 104472. https://doi.org/https://doi.org/10.1016/j.still.2019.104472
  75. Dai, A., Zhao, T., & Chen, J. (2018). Climate Change and Drought: a Precipitation and Evaporation Perspective. Current Climate Change Reports, 4(3), 301–312. https://doi.org/10.1007/s40641-018-0101-6
  76. Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer, R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Landis, D. A., Letourneau, D. K., … Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10). https://doi.org/10.1126/sciadv.aax0121
  77. Dale, B. (2020). Alliances for agroecology: from climate change to food system change. Agroecology and Sustainable Food Systems, 44(5), 629–652. https://doi.org/10.1080/21683565.2019.1697787
  78. Dawson, C. J., & Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36(1), S14–S22. https://doi.org/10.1016/J.FOODPOL.2010.11.012
  79. Debray, V., Wezel, A., Lambert-Derkimba, A., Roesch, K., Lieblein, G., & Francis, C. A. (2019). Agroecological practices for climate change adaptation in semiarid and subhumid Africa. Agroecology and Sustainable Food Systems, 43(4), 429–456. https://doi.org/10.1080/21683565.2018.1509166
  80. Deguine, J.-P., Gloanec, C., Laurent, P., Ratnadass, A., & Aubertot, J.-N. (2017). Feedback and Common Approaches to Agroecological Crop Protection: Further Examples. Agroecological Crop Protection, 109–162. https://doi.org/https://doi.org/10.1007/978-94-024-1185-0_4
  81. Delgado‐Baquerizo, M., Eldridge, D. J., Ochoa, V., Gozalo, B., Singh, B. K., & Maestre, F. T. (2017). Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 20(10), 1295–1305. https://doi.org/10.1111/ele.12826
  82. Demirdogen, A., Guldal, H. T., & Sanli, H. (2023). Monoculture, crop rotation policy, and fire. Ecological Economics, 203, 107611. https://doi.org/10.1016/J.ECOLECON.2022.107611
  83. Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919. https://doi.org/10.1126/SCIENCE.AAT3466
  84. Dhankhar, N., & Kumar, J. (2023). Impact of increasing pesticides and fertilizers on human health: A review. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.03.766
  85. Dincă, L. C., Grenni, P., Onet, C., & Onet, A. (2022). Fertilization and Soil Microbial Community: A Review. Applied Sciences, 12(3), 1198. https://doi.org/10.3390/app12031198
  86. Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L., & O’Neal, M. E. (2019). Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proceedings of the National Academy of Sciences of the United States of America, 116(50), 25147–25155. https://doi.org/10.1073/PNAS.1912801116
  87. Domergue, O. (2017). Diversité fonctionnelle des rhizobia associés à la féverole en agro-écosystème Sud de France [Université de Paris sciences et lettres]. https://theses.hal.science/tel-02107043/file/2017PSLEP067_archivage.pdf
  88. Douxchamps, S., Van Wijk, M. T., Silvestri, S., Moussa, A. S., Quiros, C., Ndour, N. Y. B., Buah, S., Somé, L., Herrero, M., Kristjanson, P., Ouedraogo, M., Thornton, P. K., Van Asten, P., Zougmoré, R., & Rufino, M. C. (2016). Linking agricultural adaptation strategies, food security and vulnerability: evidence from West Africa. Regional Environmental Change, 16(5), 1305–1317. https://doi.org/10.1007/s10113-015-0838-6
  89. Drakopoulos, D., Kägi, A., Gimeno, A., Six, J., Jenny, E., Forrer, H. R., Musa, T., Meca, G., & Vogelgsang, S. (2020). Prevention of Fusarium head blight infection and mycotoxins in wheat with cut-and-carry biofumigation and botanicals. Field Crops Research, 246. https://doi.org/10.1016/j.fcr.2019.107681
  90. Dubey, P. K., Singh, G. S., & Abhilash, P. C. (2020). Adaptive agronomic practices for sustaining food production. Adaptive Agricultural Practices, 11–43. https://doi.org/10.1007/978-3-030-15519-3_2
  91. Duchene, O., Vian, J. F., & Celette, F. (2017a). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. In Agriculture, Ecosystems and Environment, 240, 148–161. https://doi.org/10.1016/j.agee.2017.02.019
  92. Duchene, O., Vian, J.-F., & Celette, F. (2017b). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 240, 148–161. https://doi.org/10.1016/j.agee.2017.02.019
  93. Duru, M., Therond, O., & Fares, M. (2015). Designing agroecological transitions; A review. In Agronomy for Sustainable Development (Vol. 35, Issue 4, pp. 1237–1257). Springer-Verlag France. https://doi.org/10.1007/s13593-015-0318-x
  94. Eekhout, J. P. C., & De Vente, J. (2019). How soil erosion model conceptualization affects soil loss projections under climate change. Progress in Physical Geography: Earth and Environment, 44(2), 212-232. https://doi.org/10.1177/0309133319871937
  95. El Mountassir, O., Bahir, M., Ouazar, D., Chehbouni, A., & Carreira, P. M. (2022). Temporal and spatial assessment of groundwater contamination with nitrate using nitrate pollution index (NPI), groundwater pollution index (GPI), and GIS (case study: Essaouira basin, Morocco). Environmental Science and Pollution Research, 1–18. https://doi.org/https://doi.org/10.1007/s11356-021-16922-8
  96. Elad, Y., & Pertot, I. (2014). Climate Change Impacts on Plant Pathogens and Plant Diseases. Journal of Crop Improvement, 28(1), 99-139. https://doi.org/10.1080/15427528.2014.865412
  97. Elgendy, K., & Abaza, N. (2020). Urbanization in the MENA region: A Benefit or a Curse? Friedrich Ebert Stiftung. https://www.carboun.com/energy/urbanization-in-the-mena-region-a-benefit-or-a-curse/
  98. Elouattassi, Y., Ferioun, M., El Ghachtouli, N., Derraz, K., & Rachidi, F. (2023). Enhancing onion growth and yield through agroecological practices: Organic fertilization and intercropping. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2023.09.004
  99. Esnarriaga, D. N., Mariotti, M., Cardelli, R., & Arduini, I. (2020). The importance of root interactions in field bean/triticale intercrops. Plants, 9(11), 1–26. https://doi.org/10.3390/plants9111474
  100. Ewert, F., Baatz, R., & Finger, R. (2023). Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption. Annual Review of Resource Economics, 15, 351-381. https://doi.org/10.1146/ANNUREV-RESOURCE-102422-090105
  101. FAO. (2016). Achieving Sustainable Rural Development through Agricultural Innovation. www.fao.org
  102. Farghly, S., Mohamed, M. F., El-Dekashey, M. H. Z., & El-Shuwaikh, D. H. (2021). Effect of intercropping systems on yield and its component in onion / faba bean crops. SVU-International Journal of Agricultural Sciences, 3(3), 205–231. https://doi.org/10.21608/SVUIJAS.2021.82736.1121
  103. Fathallah, F. A. (2010). Musculoskeletal disorders in labor-intensive agriculture. Applied Ergonomics, 41(6), 738–743. https://doi.org/10.1016/j.apergo.2010.03.003
  104. Faye, J. B., & Braun, Y. A. (2022). Soil and human health: Understanding agricultural and socio-environmental risk and resilience in the age of climate change. Health & Place, 77, 102799. https://doi.org/10.1016/J.HEALTHPLACE.2022.102799
  105. Ferioun, M., Srhiouar, N., Bouhraoua, S., El Ghachtouli, N., & Louahlia, S. (2023). Physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13643
  106. Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C., & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20(7), 813–837. https://doi.org/10.1051/agro:2000177
  107. Finn, J. A., Suter, M., Haughey, E., Hofer, D., & Lüscher, A. (2018). Greater gains in annual yields from increased plant diversity than losses from experimental drought in two temperate grasslands. Agriculture, Ecosystems & Environment, 258, 149–153. https://doi.org/10.1016/J.AGEE.2018.02.014
  108. Fitzgerald, D. K. (1990). The business of breeding: Hybrid corn in Illinois, 1890-1940. (No Title).
  109. Francaviglia, R., Di Bene, C., Farina, R., Salvati, L., & Vicente-Vicente, J. L. (2019). Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: a comprehensive data analysis. Mitigation and Adaptation Strategies for Global Change, 24(5), 795–818. https://doi.org/https://doi.org/10.1007/s11027-018-9832-x
  110. Francis, C., Lieblein, G., Gliessman, S., Breland, T. A., Creamer, N., Harwood, R., Salomonsson, L., Helenius, J., Rickerl, D., Salvador, R., Wiedenhoeft, M., Simmons, S., Allen, P., Altieri, M., Flora, C., & Poincelot, R. (2003). Agroecology: The Ecology of Food Systems. Journal of Sustainable Agriculture, 22(3), 99–118. https://doi.org/10.1300/J064v22n03_10
  111. Frye, W. W., Ebelhar, S. A., Murdock, L. W., & Blevins, R. L. (1982). Soil Erosion Effects on Properties and Productivity of Two Kentucky Soils. Soil Science Society of America Journal, 46(5), 1051–1055. https://doi.org/10.2136/SSSAJ1982.03615995004600050033X
  112. Fustec, J., Lesuffleur, F., Mahieu, S., & Cliquet, J.-B. (2010). Nitrogen rhizodeposition of legumes. A review. Agronomy for Sustainable Development, 30(1), 57–66. https://doi.org/10.1051/agro/2009003
  113. Gallardo-López, F., Hernández-Chontal, M. A., Cisneros-Saguilán, P., & Linares-Gabriel, A. (2018). Development of the Concept of Agroecology in Europe: A Review. Sustainability, 10(4), 1210. https://doi.org/10.3390/SU10041210
  114. Gao, X., Wu, M., Xu, R., Wang, X., Pan, R., Kim, H.-J., & Liao, H. (2014). Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. Plos One, 9(5), e95031. https://doi.org/10.1371/journal.pone.0095031
  115. Garcia, L., Celette, F., Gary, C., Ripoche, A., Valdés-Gómez, H., & Metay, A. (2018). Management of service crops for the provision of ecosystem services in vineyards: A review. Agriculture, Ecosystems & Environment, 251, 158–170. https://doi.org/https://doi.org/10.1016/j.agee.2017.09.030
  116. Gautam, A., Sekaran, U., Guzman, J., Kovács, P., Hernandez, J. L. G., & Kumar, S. (2020). Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environmental and Sustainability Indicators, 8. https://doi.org/10.1016/j.indic.2020.100073
  117. Giménez, E. H., & Shattuck, A. (2011). Food crises, food regimes and food movements: Rumblings of reform or tides of transformation? Journal of Peasant Studies, 38(1), 109–144. https://doi.org/10.1080/03066150.2010.538578
  118. Girard, N., Duru, M., Hazard, L., & Magda, D. (2008). Categorising farming practices to design sustainable land-use management in mountain areas. Agronomy for Sustainable Development, 28(2), 333–343. https://doi.org/10.1051/agro:2007046
  119. Girjesh, G. K., & Patil, V. C. (1991). Weed management studies in groundnut and sunflower intercropping system. J. Oilseeds Res, 8, 7–13.
  120. Glande, D. R., & Simon, S. (2019). Effect of intercropping on purple blotch (Alternaria porri) of onion (Allium cepa L.). Intl J Curr Microbiol App Sci, 8(2), 1105–1111.
  121. Gliessman, S. (2018). Defining Agroecology. Agroecology and Sustainable Food Systems, 42(6), 599-600. https://doi.org/10.1080/21683565.2018.1432329
  122. González-Rosado, M., Parras-Alcántara, L., Aguilera-Huertas, J., Lozano-García, B., Di Bene, C., Farina, R., Francaviglia, R., & Álvaro-Fuentes, J. (2021). Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions. Agronomy, Vol. 11, Page 812, 11(4), 812. https://doi.org/10.3390/AGRONOMY11040812
  123. Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.-S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. https://doi.org/https://doi.org/10.1016/j.micres.2017.08.016
  124. Griffin, K. (1979). The political economy of agrarian change: An essay on the Green Revolution. Springer.
  125. Guardia, G., Abalos, D., García-Marco, S., Quemada, M., Alonso-Ayuso, M., Cárdenas, L. M., Dixon, E. R., & Vallejo, A. (2016). Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences, 13(18), 5245–5257. https://doi.org/10.5194/bg-13-5245-2016
  126. Guo, S., Wang, P., Wang, X., Zou, M., Liu, C., & Hao, J. (2020). Microalgae as biofertilizer in modern agriculture. Microalgae Biotechnology for Food, Health and High Value Products, 397–411. https://doi.org/10.1007/978-981-15-0169-2_12
  127. Gupta, A. (1998). Postcolonial developments: Agriculture in the making of modern India. Duke University Press.
  128. Gupta, A. (2008). Impact of pesticides on human and ecosystem health: Scientific, ethical and policy issues. Proceedings of National Seminar on Toxicity of Chemicals and Their Hazards with Special Reference to Heavy Metals (St. Edmund’s College, Shillong), 61–72.
  129. Hanif, I., Aziz, B., & Chaudhry, I. S. (2019). Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renewable Energy, 143, 586–595. https://doi.org/10.1016/J.RENENE.2019.05.032
  130. Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., Bede, L., Brown, D., Calle, A., & Chará, J. (2014). Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters, 7(2), 77–90. https://doi.org/10.1111/conl.12066
  131. Harwood, J. (2019). Was the Green Revolution intended to maximise food production? International Journal of Agricultural Sustainability, 17(4), 312–325.
  132. He, X., Xie, H., Gao, D., Khashi, M., Zhou, X., & Wu, F. (2021). Biochar and Intercropping With Potato–Onion Enhanced the Growth and Yield Advantages of Tomato by Regulating the Soil Properties, Nutrient Uptake, and Soil Microbial Community. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.695447
  133. Hei, Z., Xiang, H., Zhang, J., Liang, K., Zhong, J., Li, M., & Ren, X. (2022). Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application. Agriculture, 12(1), 13. https://doi.org/https://doi.org/10.3390/agriculture12010013
  134. Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, M., Weiss, F., Grace, D., & Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20888–20893. https://doi.org/10.1073/pnas.1308149110
  135. Herrero, M., Thornton, P. K., Power, B., Bogard, J. R., Remans, R., Fritz, S., Gerber, J. S., Nelson, G., See, L., & Waha, K. (2017). Farming and the geography of nutrient production for human use: a transdisciplinary analysis. The Lancet Planetary Health, 1(1), e33–e42. https://doi.org/https://doi.org/10.1016/S2542-5196(17)30007-4
  136. Hill, S. B., & MacRae, R. J. (1996). Conceptual Framework for the Transition from Conventional to Sustainable Agriculture. Journal of Sustainable Agriculture, 7(1), 81–87. https://doi.org/10.1300/J064v07n01_07
  137. HLPE. (2019). Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition. A Report by High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security: Rome, Italy. https://www.fao.org/3/ca5602en/ca5602en.pdf
  138. Hofer, D., Suter, M., Haughey, E., Finn, J. A., Hoekstra, N. J., Buchmann, N., & L€ Uscher, A. (2016). Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. Journal of Applied Ecology, 53(4), 1023–1034. https://doi.org/10.1111/1365-2664.12694
  139. Hssaisoune, M., Bouchaou, L., Sifeddine, A., Bouimetarhan, I., & Chehbouni, A. (2020). Moroccan groundwater resources and evolution with global climate changes. Geosciences, 10(2). https://doi.org/10.3390/geosciences10020081
  140. Idris, O. A., Opute, P., Orimoloye, I. R., & Maboeta, M. S. (2022). Climate Change in Africa and Vegetation Response: A Bibliometric and Spatially Based Information Assessment. Sustainability, 14(9), 4974. https://doi.org/10.3390/SU14094974
  141. IPCC. (2014). Climate change 2014 : synthesis report. https://climateanalytics.org/media/ipcc_syr_ar5__2014_.pdf
  142. Iqbal, N., Hussain, S., Ahmed, Z., Yang, F., Wang, X., Liu, W., Yong, T., Du, J., Shu, K., & Yang, W. (2019). Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Production Science, 22(2), 131–142. https://doi.org/10.1080/1343943X.2018.1541137
  143. Irhza, A., Nassiri, L., El Jarroudi, M., Rachidi, F., Lahlali, R., & Echchgadda, G. (2023). Description of the Gap between Local Agricultural Practices and Agroecological Soil Management Tools in Zerhoun and in the Middle Atlas Areas of Morocco. Land, 12(2), 268.
  144. Isaac, M. E., Isakson, S. R., Dale, B., Levkoe, C. Z., Hargreaves, S. K., Méndez, V. E., Wittman, H., Hammelman, C., Langill, J. C., Martin, A. R., Nelson, E., Ekers, M., Borden, K. A., Gagliardi, S., Buchanan, S., Archibald, S., & Ciani, A. G. (2018). Agroecology in Canada: Towards an integration of agroecological practice, movement, and science. Sustainability, 10(9). https://doi.org/10.3390/su10093299
  145. Itelima, Bang, W. J., Onyimba, I. A., Sila, & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A Review. 6(3), 73–83. https://doi.org/10.26765/DRJAFS.2018.4815
  146. Jacobsen, S. E., Sørensen, M., Pedersen, S. M., & Weiner, J. (2013). Feeding the world: Genetically modified crops versus agricultural biodiversity. Agronomy for sustainable development, 33, 651-662. https://doi.org/10.1007/s13593-013-0138-9
  147. Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8, 1617. https://doi.org/https://doi.org/10.3389/fpls.2017.01617
  148. Jeanneret, P., Aviron, S., Alignier, A., Lavigne, C., Helfenstein, J., Herzog, F., Kay, S., & Petit, S. (2021). Agroecology landscapes. Landscape Ecology, 36(8), 2235–2257. https://doi.org/10.1007/s10980-021-01248-0
  149. Jose, S. (2012). Agroforestry for conserving and enhancing biodiversity. Agroforestry Systems, 85(1), 1–8. https://doi.org/10.1007/s10457-012-9517-5
  150. Kabore, P. N., Barbier, B., Ouoba, P., Kiema, A., Some, L., & Ouedraogo, A. (2019). Farmers’ perceptions of climate change, environmental impacts and endogenous adaptive strategies in the North Central of Burkina Faso. VertigO-La Revue Electronique En Sciences de l’Environment, 19(1). https://id.erudit.org/iderudit/1065432ar
  151. Kaka, H., Opute, P. A., & Maboeta, M. S. (2021). Potential Impacts of Climate Change on the Toxicity of Pesticides towards Earthworms. Journal of Toxicology, 2021. https://doi.org/10.1155/2021/8527991
  152. Kaur, G., Gupta, G., & Hooda, K. (2021). Intercropping Systems in Wheat (Triticum sativum L.) for Insect Pests and Disease Management – A Review. Journal of Pharmaceutical Research International, 122–129. https://doi.org/10.9734/jpri/2021/v33i53b33688
  153. Kay, S., Graves, A., Palma, J. H. N., Moreno, G., Roces-Díaz, J. v, Aviron, S., Chouvardas, D., Crous-Duran, J., Ferreiro-Domínguez, N., & de Jalón, S. G. (2019). Agroforestry is paying off–Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosystem Services, 36, 100896.
  154. Kaye, J. P., & Quemada, M. (2017). Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev, 37, 4. https://doi.org/0.1007/s13593-016-0410-x
  155. Kew, S. F., Philip, S. Y., Hauser, M., Hobbins, M., Wanders, N., Van Oldenborgh, J., Van Der Wiel, K., Veldkamp, T. I. E., Kimutai, J., Funk, C., & Otto, F. E. L. (2021). Impact of precipitation and increasing temperatures on drought trends in eastern Africa. Earth Syst. Dynam, 12, 17–35. https://doi.org/10.5194/esd-12-17-2021
  156. Khan, M., Mobin, M., … Z. A.-E. of the, & 2018, undefined. (2018). Fertilizers and their contaminants in soils, surface and groundwater. Fac.Ksu.Edu.Sa, 5, 225–240. https://doi.org/10.1016/B978-0-12-809665-9.09888-8
  157. Kloppenburg, J. R. (2005). First the seed: The political economy of plant biotechnology. Univ of Wisconsin Press.
  158. Pascal, A. T. K., Alain, K. A. J., Sidiky, B., Emmanuel, K. K., Norbert, K. N. D., Boaké, K., ... & Bassirou, B. (2019). Effets d'engrais organique liquide (NPK 5-9-18) et minéral (NPK 12-11-18) sur la matière organique du sol et du rendement de la tomate au Sud et au Centre-Ouest de la Côte d'Ivoire. International Journal of Innovation and Applied Studies, 27(4), 955-964. https://doi.org/10.35759/janmplsci.v41-3.8
  159. Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: An agroecological, systems-based alternative to modern industrial agriculture. Ecology and Society, 17(4). https://doi.org/10.5751/ES-05103-170444
  160. Kumar, R. (2016). Rethinking revolutions: Soyabean, choupals, and the changing countryside in Central India.
  161. Kuzucu, M. (2017). Effects of water harvesting techniques and using humic acid on soil moisture, plant evaporation, growth and yield in pistachio orchards in southeastern of Turkey. Fresenius Environmental Bulletin, 26(12), 7521–7528.
  162. Laborde, D., Martin, W., Swinnen, J., & Vos, R. (2020). COVID-19 risks to global food security. Science, 369(6503), 500–502). https://doi.org/10.1126/science.abc4765
  163. Lacetera, N. (2019). Impact of climate change on animal health and welfare. Animal Frontiers, 9(1), 26–31. https://doi.org/10.1093/AF/VFY030
  164. Lacey, H., & Lefèvre, M. (2015). Agroécologie: la science et les valeurs de la justice sociale, de la démocratie et de la durabilité. Ecologie & Politique, 51(2), 27. https://doi.org/10.3917/ecopo.051.0027
  165. Lal, R. (1988). Monitoring soil erosion’s impact on crop productivity. Soil Erosion Research Methods, 1, 187–200.
  166. Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. https://doi.org/10.1002/LDR.472
  167. Lal, R. (2004). Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosystems, 70, 103–116. https://doi.org/10.1023/b:fres0000048480.24274.0f
  168. Leal Filho, W., Nagy, G. J., Setti, A. F. F., Sharifi, A., Donkor, F. K., Batista, K., & Djekic, I. (2023). Handling the impacts of climate change on soil biodiversity. Science of The Total Environment, 869, 161671. https://doi.org/10.1016/J.SCITOTENV.2023.161671
  169. Lee, H., Lautenbach, S., Nieto, A. P. G., Bondeau, A., Cramer, W., & Geijzendorffer, I. R. (2019). The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—a meta-analysis. Regional Environmental Change, 19(8), 2187–2202.
  170. Leippert, F., Darmaun, M., Bernoux, M., Mpheshea, M., Müller, A., Geck, M., Herren, M., Irungu, W., Nyasimi, M., & Sene, J. M. (2020). The potential of agroecology to build climate-resilient livelihoods and food systems. Food and Agriculture Organization of the United Nations FAO and Biovision.
  171. Levidow, L., Pimbert, M., & Vanloqueren, G. (2014). Agroecological Research: Conforming—or Transforming the Dominant Agro-Food Regime? Agroecology and Sustainable Food Systems, 38(10), 1127–1155. https://doi.org/10.1080/21683565.2014.951459
  172. Li, C., Hoffland, E., Kuyper, T. W., Yu, Y., Zhang, C., Li, H., Zhang, F., & van der Werf, W. (2020). Syndromes of production in intercropping impact yield gains. Nature Plants, 6(6), 653–660. https://doi.org/10.1038/s41477-020-0680-9
  173. Li, S. M., Li, L., Zhang, F. S., & Tang, C. (2004). Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 94(2), 297–303. https://doi.org/https://doi.org/10.1093/aob/mch140
  174. Li, X. F., Wang, C. B., Zhang, W. P., Wang, L. H., Tian, X. L., Yang, S. C., Jiang, W. L., van Ruijven, J., & Li, L. (2018). The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 422(1–2), 479–493. https://doi.org/10.1007/s11104-017-3487-3
  175. Li, X.-W., Lu, X.-X., Zhang, Z.-J., Huang, J., Zhang, J.-M., Wang, L.-K., Hafeez, M., Mandela Fernández-Grandon, G., & Lu, Y.-B. (2021). Intercropping Rosemary (Rosmarinus officinalis) with Sweet Pepper (Capsicum annum) Reduces Major Pest Population Densities without Impacting Natural Enemy Populations. Insects, 12(1), 74. https://doi.org/10.3390/insects
  176. Li, Y., Ye, W., Wang, M., & Yan, X. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 39(1), 31–46. https://doi.org/10.3354/CR00797
  177. Liang, J., He, Z., & Shi, W. (2020). Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agricultural Water Management, 240, 106277. https://doi.org/10.1016/J.AGWAT.2020.106277
  178. Lieberei, J., & Gheewala, S. H. (2017). Resource depletion assessment of renewable electricity generation technologies—comparison of life cycle impact assessment methods with focus on mineral resources. International Journal of Life Cycle Assessment, 22(2), 185–198. https://doi.org/10.1007/S11367-016-1152-3/METRICS
  179. Lin, B. B. (2011). Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience, 61(3), 183–193. https://doi.org/10.1525/bio.2011.61.3.4
  180. Lin, B. B., Egerer, M. H., Liere, H., Jha, S., Bichier, P., & Philpott, S. M. (2018). Local- and landscape-scale land cover affects microclimate and water use in urban gardens. Science of the Total Environment, 610–611, 570–575. https://doi.org/10.1016/j.scitotenv.2017.08.091
  181. Litrico, I., & Violle, C. (2015). Diversity in Plant Breeding: A New Conceptual Framework. Trends in Plant Science, 20(10), 604–613. https://doi.org/10.1016/j.tplants.2015.07.007
  182. Litskas, V. D., Irakleous, T., Tzortzakis, N., & Stavrinides, M. C. (2017). Determining the carbon footprint of indigenous and introduced grape varieties through Life Cycle Assessment using the island of Cyprus as a case study. Journal of Cleaner Production, 156, 418–425. https://doi.org/10.1016/j.jclepro.2017.04.057
  183. Liu, C., Cai, Q., Liao, P., Jiang, X., Tang, X., Yang, Q., & Zhou, L. (2021). Effects of Fallopia multiflora–Andrographis paniculata intercropping model on yield, quality, soil nutrition and rhizosphere microorganisms of F. multiflora. Plant and Soil, 467(1–2), 465–481. https://doi.org/10.1007/s11104-021-05106-5
  184. Liu, D. L., Zeleke, K. T., Wang, B., Macadam, I., Scott, F., & Martin, R. J. (2017). Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. European Journal of Agronomy, 85, 51–68. https://doi.org/10.1016/j.eja.2017.02.004
  185. Liu, L., Zheng, X., Wei, X., Kai, Z., & Xu, Y. (2021). Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-02521-7
  186. Liu, X., Zhang, J., Gu, T., Zhang, W., Shen, Q., Yin, S., & Qiu, H. (2014). Microbial Community Diversities and Taxa Abundances in Soils along a Seven-Year Gradient of Potato Monoculture Using High Throughput Pyrosequencing Approach. PLoS ONE, 9(1), e86610. https://doi.org/10.1371/journal.pone.0086610
  187. Liu, Y., Ma, W., He, H., Wang, Z., & Cao, Y. (2021). Effects of Sugarcane and Soybean Intercropping on the Nitrogen-Fixing Bacterial Community in the Rhizosphere. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.713349
  188. Lobo, D., Lozano, Z., & Delgado, F. (2005). Water erosion risk assessment and impact on productivity of a Venezuelan soil. CATENA, 64(2–3), 297–306. https://doi.org/10.1016/J.CATENA.2005.08.011
  189. López-García, D., Cuéllar-Padilla, M., de Azevedo Olival, A., Laranjeira, N. P., Méndez, V. E., Peredo y Parada, S., Barbosa, C. A., Barrera Salas, C., Caswell, M., Cohen, R., Correro-Humanes, A., García-García, V., Gliessman, S. R., Pomar-León, A., Sastre-Morató, A., & Tendero-Acín, G. (2021). Building agroecology with people. Challenges of participatory methods to deepen on the agroecological transition in different contexts. Journal of Rural Studies, 83, 257–267. https://doi.org/10.1016/j.jrurstud.2021.02.003
  190. Lovarelli, D., & Bacenetti, J. (2017). Seedbed preparation for arable crops: Environmental impact of alternative mechanical solutions. Soil and Tillage Research, 174, 156–168. https://doi.org/10.1016/j.still.2017.06.006
  191. Lu, P., Zhang, Z., Sheng, Z., Huang, M., Agronomy, Z. Z.-, & 2019, undefined. (2019). Effect of Surface Straw Incorporation Rate on Water–Salt Balance and Maize Yield in Soil Subject to Secondary Salinization with Brackish Water Irrigation. Agronomy, 9(7), 341. https://doi.org/10.3390/agronomy9070341
  192. Lulie, B. (2017). Intercropping Practice as an Alternative Pathway for Sustainable Agriculture: A review. Acad. Res. J. Agri. Sci. Res., 5(6), 440–452. https://doi.org/10.14662/ARJASR2017.057
  193. Lupwayi, N. Z., Zhang, Y., Hao, X., Thomas, B. W., Eastman, A. H., & Schwinghamer, T. D. (2019). Linking soil microbial biomass and enzyme activities to long-term manure applications and their nonlinear legacy. Pedobiologia, 74, 34–42. https://doi.org/10.1016/j.pedobi.2019.04.001
  194. Ma, S., Wang, H.-Y., Zhang, X., Wang, L.-J., & Jiang, J. (2022). A nature-based solution in forest management to improve ecosystem services and mitigate their trade-offs. Journal of Cleaner Production, 351, 131557. https://doi.org/10.1016/j.jclepro.2022.131557
  195. Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/j.pbi.2009.04.003
  196. Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0
  197. Maitra, S. (2019). Potential of Intercropping System in Sustaining Crop Productivity. International Journal of Agriculture Environment and Biotechnology, 12(01). https://doi.org/10.30954/0974-1712.03.2019.7
  198. Maja, M. M., & Ayano, S. F. (2021). The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Systems and Environment, 5(2), 271–283. https://doi.org/10.1007/S41748-021-00209-6
  199. Malek, Ž., Verburg, P. H., R Geijzendorffer, I., Bondeau, A., & Cramer, W. (2018). Global change effects on land management in the Mediterranean region. Global Environmental Change, 50, 238–254. https://doi.org/10.1016/j.gloenvcha.2018.04.007
  200. Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., & Manna, M. C. (2020). Impact of agrochemicals on soil health. In Agrochemicals detection, treatment and remediation (pp. 161-187). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00007-6
  201. Mandal, D., Chandrakala, M., Alam, N. M., Roy, T., & Mandal, U. (2021). Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India. CATENA, 204, 105440. https://doi.org/10.1016/J.CATENA.2021.105440
  202. Mandal, D., Patra, S., Sharma, N. K., Alam, N. M., Jana, C., & Lal, R. (2023). Impacts of Soil Erosion on Soil Quality and Agricultural Sustainability in the North-Western Himalayan Region of India. Sustainability, 15(6), 5430. https://doi.org/10.3390/SU15065430
  203. Manici, L. M., Kelderer, M., Franke-Whittle, I. H., Rühmer, T., Baab, G., Nicoletti, F., Caputo, F., Topp, A., Insam, H., & Naef, A. (2013). Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe. Applied Soil Ecology, 72, 207–214. https://doi.org/10.1016/j.apsoil.2013.07.011
  204. Marull, J., Cattaneo, C., Gingrich, S., de Molina, M. G., Guzmán, G. I., Watson, A., MacFadyen, J., Pons, M., & Tello, E. (2019). Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s. Agricultural Systems, 175, 46–57. https://doi.org/10.1016/j.agsy.2019.05.011
  205. Massicotte, M. J., & Kelly-Bisson, C. (2019). What’s wrong with permaculture design courses? Brazilian lessons for agroecological movement-building in Canada. Agriculture and Human Values, 36(3), 581–594. https://doi.org/10.1007/s10460-018-9870-8
  206. Matthan, T. (2022). Beyond bad weather: climates of uncertainty in rural India. The Journal of Peasant Studies, 50(1), 114-135. https://doi.org/10.1080/03066150.2022.2116316
  207. Mazzola, M., & Manici, L. M. (2012). Apple replant disease: Role of microbial ecology in cause and control. Annual Review of Phytopathology, 50, 45–65. https://doi.org/10.1146/annurev-phyto-081211-173005
  208. Mballo, I., Sy, O., & Faye, C. (2019). Variabilité climatique et productions vivrières en Haute Casamance (SUD-SENEGAL). Espace Géographique et Société Marocaine, 28/29. file:///Users/mac/Downloads/17394-44507-1-PB%20(1).pdf
  209. Mbow, C., Van Noordwijk, M., Luedeling, E., Neufeldt, H., Minang, P. A., & Kowero, G. (2014). Agroforestry solutions to address food security and climate change challenges in Africa. Current Opinion in Environmental Sustainability, 6, 61–67. https://doi.org/https://doi.org/10.1016/j.cosust.2013.10.014
  210. Mebrate, A., Zeray, N., Tadesse, K., & Haile, G. (2022). Determinants of soil fertility management practices in Gedeo Zone, Southern Ethiopia: Logistic regression approach. Heliyon, e08820. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e08820
  211. Mendelsohn, R., & Mendelsohn, R. (2009). The Impact of Climate Change on Agriculture in Developing Countries. Journal of Natural Resources Policy Research, 1(1), 5–19. https://doi.org/10.1080/19390450802495882
  212. Méndez, V. E., Bacon, C. M., & Cohen, R. (2013). Agroecology as a transdisciplinary, participatory, and action-oriented approach. Agroecology and Sustainable Food Systems, 37(1), 3–18. https://doi.org/10.1080/10440046.2012.736926
  213. Meragiaw, M. (2017). Role of agroforestry and plantation on climate change mitigation and carbon sequestration in Ethiopia. J Tree Sci, 36(1), 1–15.
  214. Migliorini, P., & Wezel, A. (2017). Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agronomy for sustainable development, 37, 1-18. https://doi.org/10.1007/s13593-017-0472-4
  215. Moghbeli, T., Bolandnazar, S., Panahande, J., & Raei, Y. (2019). Evaluation of yield and its components on onion and fenugreek intercropping ratios in different planting densities. Journal of Cleaner Production, 213, 634–641. https://doi.org/10.1016/j.jclepro.2018.12.138
  216. Mohammadi, K., Seyed, ·, Fathi, A. A., Razmjou, J., Naseri, · Bahram, & Seyed, *. (2021). Evaluation of the effect of strip intercropping green bean/ garlic on the control of Tetranychus urticae in the field. Experimental and Applied Acarology, 83, 183–195. https://doi.org/10.1007/s10493-020-00583-2
  217. Moldavan, L., Pimenowa, O., Wasilewski, M., & Wasilewska, N. (2023). Sustainable Development of Agriculture of Ukraine in the Context of Climate Change. Sustainability, 15(13), 10517. https://doi.org/10.3390/SU151310517
  218. Mommer, L., & Visser, E. J. W. (2005). Underwater Photosynthesis in Flooded Terrestrial Plants: A Matter of Leaf Plasticity. Annals of Botany, 96(4), 581–589. https://doi.org/10.1093/AOB/MCI212
  219. Mondédji, A. D., Silvie, P., Nyamador, W. S., Martin, P., Agboyi, L. K., Amévoin, K., Ketoh, G. K., & Glitho, I. A. (2021). Cabbage Production in West Africa and IPM with a Focus on Plant-Based Extracts and a Complementary Worldwide Vision. Plants, 10(3), 529. https://doi.org/10.3390/plants10030529
  220. Montagnini, F., & Metzel, R. (2017). The Contribution of Agroforestry to Sustainable Development Goal 2: End Hunger, Achieve Food Security and Improved Nutrition, and Promote Sustainable Agriculture (pp. 11–45). https://doi.org/10.1007/978-3-319-69371-2_2
  221. Montesinos, X. A., & Pérez, S. O. (2015). La ruralidad del 15-M. Iniciativas desde el movimiento agroecológico alicantino. ACME: An International Journal for Critical Geographies, 14(1), 185–199. https://acme-journal.org/index.php/acme/article/view/1146
  222. Moreno, G., Aviron, S., Berg, S., Crous-Duran, J., Franca, A., de Jalón, S. G., Hartel, T., Mirck, J., Pantera, A., Palma, J. H. N., Paulo, J. A., Re, G. A., Sanna, F., Thenail, C., Varga, A., Viaud, V., & Burgess, P. J. (2018). Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agroforestry Systems, 92(4), 877–891. https://doi.org/10.1007/s10457-017-0126-1
  223. Mousavi, S. R., & Eskandari, H. (2011). A general overview on intercropping and its advantages in sustainable agriculture. Journal of Applied Environmental and Biological Sciences, 1(11), 482–486. https://www.researchgate.net/profile/Sayed-Roholla-Mousavi/publication/220000362_A_General_Overview_on_Intercropping_and_Its_Advantages_in_Sustainable_Agriculture/links/0912f50470281eea2e000000/A-General-Overview-on-Intercropping-and-Its-Advantages-in-Sustainable-Agriculture.pdf
  224. Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/J.JENVMAN.2020.111736
  225. Mutengwa, C. S., Mnkeni, P., & Kondwakwenda, A. (2023). Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change. Sustainability, 15(4), 2882. https://doi.org/10.3390/su15042882
  226. Nakhro, N., & Dkhar, M. S. (2010). Impact of organic and inorganic fertilizers on populations and biomass carbon in paddy field soil. Agron J, 9(3), 102–110. http://www.grazingbestprac.com.au/research/chemicals/102-110.pdf
  227. Nalluri, N., & Rama Karri, V. (2018). Use of groundnut shell compost as a natural fertilizer for the cultivation of vegetable plants. International Journal of Advanced Research on Science and Engineering, 7(1).
  228. Narla, R. D., Muthomi, J. W., Gachu, S. M., Nderitu, J. H., & Olubayo, F. M. (2011). Effect of intercropping bulb onion and vegetables on purple blotch and downy mildew. Journal of Biological Sciences, 11(1), 52–57.
  229. Narotzky, S. (2016). Where have all the peasants gone? Annual Review of Anthropology, 45, 301–318. https://doi.org/https://doi.org/10.1146/annurev-anthro-102215-100240
  230. Natarajan, M., & Willey, R. W. (1986). The effects of water stress on yield advantages of intercropping systems. Field Crops Research, 13(C), 117–131. https://doi.org/10.1016/0378-4290(86)90015-8
  231. Nations, F. (2015). World fertilizer trends and outlook to 2018. Rome: FAO.
  232. Nawaz, A., & Farooq, M. (2016). Weed management in resource conservation production systems in Pakistan. Crop Protection, 85, 89–103. https://doi.org/10.1016/j.cropro.2016.04.002
  233. Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E. B., Anderton, C. R., McClure, R., Lipton, M., Hofmockel, K. S., & Jansson, J. K. (2020). Soil Microbiomes Under Climate Change and Implications for Carbon Cycling. Annual Review of Environment and Resources, 45(1), 29-59. https://doi.org/10.1146/ANNUREV-ENVIRON-012320-082720
  234. Nguyen, Q., Hoang, M. H., Öborn, I., & van Noordwijk, M. (2013). Multipurpose agroforestry as a climate change resiliency option for farmers: An example of local adaptation in Vietnam. Climatic Change, 117(1–2), 241–257. https://doi.org/10.1007/s10584-012-0550-1
  235. Nguyen, T. N., Tuan, P. A., Mukherjee, S., Son, S., & Ayele, B. T. (2018). Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. Journal of Experimental Botany, 69(16), 4065–4082. https://doi.org/10.1093/JXB/ERY190
  236. NING, C. chuan, GAO, P. dong, WANG, B. qing, LIN, W. peng, JIANG, N. hao, & CAI, K. zheng. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4
  237. Nyéléni, M. (2015). Declaration of the international forum for agroecology. International Planning Committee for Food Sovereignty. Consultado o, 18. http://foodsovereignty.org/wp-content/uploads/2015/02/Download-declaration-Agroecology-Nyeleni-2015.pdf
  238. Osanai, Y., Tissue, D. T., Bange, M. P., Anderson, I. C., Braunack, M. V., & Singh, B. K. (2017). Plant-soil interactions and nutrient availability determine the impact of elevated CO 2 and temperature on cotton productivity. Plant and Soil, 410, 87-102. https://doi.org/10.1007/s11104-016-2981-3
  239. Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical Fertilizers and Their Impact on Soil Health. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs (pp. 1–20). Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_1
  240. Pal, S. C., & Chakrabortty, R. (2019). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research, 64(2), 352–377. https://doi.org/10.1016/J.ASR.2019.04.033
  241. Pan, X., Lv, J., Dyck, M., & He, H. (2021). Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020. Agriculture, 11(3), 223. https://doi.org/10.3390/AGRICULTURE11030223
  242. Pantera, A., Burgess, P. J., Mosquera Losada, R., Moreno, G., López-Díaz, M. L., Corroyer, N., McAdam, J., Rosati, A., Papadopoulos, A. M., Graves, A., Rigueiro Rodríguez, A., Ferreiro-Domínguez, N., Fernández Lorenzo, J. L., González-Hernández, M. P., Papanastasis, V. P., Mantzanas, K., Van Lerberghe, P., & Malignier, N. (2018). Agroforestry for high value tree systems in Europe. Agroforestry Systems, 92(4), 945–959. https://doi.org/10.1007/s10457-017-0181-7
  243. Parmesan, C., Morecroft, M., & Trisurat, Y. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Impacts, adaptation and vulnerability (Doctoral dissertation, GIEC). https://hal.science/hal-03774939/document
  244. Pathak, P., Singh, C., Chaudhary, N., Rathi, A., & Vyas, D. (2021). Fertilizing with spent mushroom compost. Recent Trends Mushroom Biol. 1st Ed., Delhi: Global Books Organisation, 175–186.
  245. Peeters, A., Dendoncker, N., & Jacobs, S. (2013). Enhancing ecosystem services in Belgian agriculture through agroecology: a vision for a farming with a future. Ecosystem Services, 285–304. https://doi.org/https://doi.org/10.1016/B978-0-12-419964-4.00022-6
  246. Peltre, C., Nyord, T., Bruun, S., Jensen, L. S., & Magid, J. (2015). Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agriculture, Ecosystems & Environment, 211, 94–101. https://doi.org/https://doi.org/10.1016/j.agee.2015.06.004
  247. Pérez, J. L. H. (2016). Regímenes alimentarios y cuestiones agrarias. Revista Mexicana de Sociología, 78(3), 551–554. https://doi.org/https://doi.org/10.2307/26383458
  248. Petit, S., Muneret, L., Carbonne, B., Hannachi, M., Ricci, B., Rusch, A., & Lavigne, C. (2020). Landscape-scale expansion of agroecology to enhance natural pest control: A systematic review. Advances in Ecological Research, 63, 1–48. https://doi.org/10.1016/bs.aecr.2020.09.001
  249. Phocas, F., Belloc, C., Bidanel, J., Delaby, L., Dourmad, J. Y., Dumont, B., Ezanno, P., Fortun-Lamothe, L., Foucras, G., Frappat, B., González-García, E., Hazard, D., Larzul, C., Lubac, S., Mignon-Grasteau, S., Moreno, C. R., Tixier-Boichard, M., & Brochard, M. (2016). Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies. Animal, 10(11), 1760–1769. https://doi.org/10.1017/S1751731116001051
  250. Pimbert, M. (2015). Agroecology as an alternative vision to conventional development and climate-smart agriculture. Springer. https://doi.org/10.1057/s41301-016-0013-5
  251. Pimentel, D., & Burgess, M. (2013). Soil Erosion Threatens Food Production. Agriculture, 3(3), 443–463. https://doi.org/10.3390/AGRICULTURE3030443
  252. Pogrzeba, M., Rusinowski, S., & Krzyżak, J. (2018). Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environmental Science and Pollution Research, 25(12), 12096–12106. https://doi.org/10.1007/s11356-018-1490-8
  253. Prashar, P., & Shah, S. (2016). Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. Sustainable Agriculture Reviews, 19, 331-361. https://doi.org/10.1007/978-3-319-26777-7_8
  254. Rafaela, F. C., Engil, I. P. P., Abdul, N., Maria, I. A., & Johan, S. (2022). Identifying available resources and agricultural practices useful in soil fertility management to support orange-fleshed sweet potato cultivation on smallholder farms in Mozambique. African Journal of Agricultural Research, 18(1), 58–72. https://doi.org/10.5897/AJAR2021.15868
  255. Rahman, M. M. (2023). Alternatives to Rice Monoculture in Bangladesh: The Way of Cleaner Production and Responsible Consumption. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4429979
  256. Raj, A., Jhariya, M. K., Banerjee, A., Khan, N., Meena, R. S., Oraon, P. R., & Yadav, S. K. (2021). Agroecosystem Service Management and Environmental Sustainability. Sustainable Intensification for Agroecosystem Services and Management, 379–402. https://doi.org/10.1007/978-981-16-3207-5_12
  257. Rajeshwar, M., & Khan, M. A. A. (2010). Effect of biofertilizers on crop yield and soil available nutrients of rice and maize in alfisols of Nagarjuna Sagar left canal command area of Andhra Pradesh, India. Asian Journal of Soil Science, 5(1), 200–203.
  258. Renwick, L. L. R., Kimaro, A. A., Hafner, J. M., Rosenstock, T. S., & Gaudin, A. C. M. (2020). Maize-Pigeonpea Intercropping Outperforms Monocultures Under Drought. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.562663
  259. Reuter, T., Brinkmeyer, T., Schreiber, J., Freese, V., Trautz, D., & Kühling, I. (2022). Effects of mixed intercropping on the agronomic parameters of two organically grown malting barley cultivars (Hordeum vulgare) in Northwest Germany. European Journal of Agronomy, 134, 126470. https://doi.org/https://doi.org/10.1016/j.eja.2022.126470
  260. Reza, M. S., & Sabau, G. (2022). Impact of climate change on crop production and food security in Newfoundland and Labrador, Canada. Journal of Agriculture and Food Research, 10, 100405. https://doi.org/10.1016/J.JAFR.2022.100405
  261. Rezaei-Chiyaneh, E., Amirnia, R., Amani Machiani, M., Javanmard, A., Maggi, F., & Morshedloo, M. R. (2020). Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Scientia Horticulturae, 261. https://doi.org/10.1016/j.scienta.2019.108951
  262. Rhioui, W., Al Figuigui, J., Lahlali, R., Laasli, S.-E., Boutagayout, A., El Jarroudi, M., & Belmalha, S. (2023). Towards Sustainable Vegetable Farming: Exploring Agroecological Alternatives to Chemical Products in the Fez-Meknes Region of Morocco. Sustainability, 15(9), 7412. https://doi.org/10.3390/su15097412
  263. Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., Ahmad, M., & Murtaza, G. (2020). Bio-fertilizers: eco-friendly approach for plant and soil environment. Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation, 189–213. https://doi.org/10.1007/978-3-030-35691-0_9
  264. Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4–17. https://doi.org/10.1007/s13280-016-0793-6
  265. Rodríguez, M. P., Domínguez, A., Moreira Ferroni, M., Wall, L. G., & Bedano, J. C. (2020). The diversification and intensification of crop rotations under no-till promote earthworm abundance and biomass. Agronomy, 10(7), 919.
  266. Rosa-Schleich, J., Loos, J., Mußhoff, O., & Tscharntke, T. (2019). Ecological-economic trade-offs of diversified farming systems–a review. Ecological Economics, 160, 251–263. https://doi.org/https://doi.org/10.1016/j.ecolecon.2019.03.002
  267. Rosati, P. J. B. A., Burgess, P. J., & Rosati, A. (2018). Advances in European agroforestry: results from the AGFORWARD project. Agroforest Syst, 92, 801–810. https://doi.org/10.1007/s10457-018-0261-3
  268. Rosenzweig, C., Iglesius, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events-Implications for food production, plant diseases, and pests. https://digitalcommons.unl.edu/nasapub/24/
  269. Rosset, P. M., & Altieri, M. A. (1997). Agroecology versus input substitution: A fundamental contradiction of sustainable agriculture. Society & Natural Resources, 10(3), 283–295. https://doi.org/10.1080/08941929709381027
  270. Rosset, P. M., & Altieri, M. A. (2017). Agroecology: science and politics. Practical Action Publishing.
  271. Ruiz-Colmenero, M., Bienes, R., Eldridge, D. J., & Marques, M. J. (2013). Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena, 104, 153–160. https://doi.org/10.1016/j.catena.2012.11.007
  272. Rusch, A., Delbac, L., & Thiéry, D. (2017). Grape moth density in Bordeaux vineyards depends on local habitat management despite effects of landscape heterogeneity on their biological control. Journal of Applied Ecology, 54(6), 1794–1803. https://doi.org/10.1111/1365-2664.12858
  273. Rusinamhodzi, L., Dahlin, S., & Corbeels, M. (2016). Living within their means: Reallocation of farm resources can help smallholder farmers improve crop yields and soil fertility. Agriculture, Ecosystems & Environment, 216, 125–136. https://doi.org/10.1016/j.agee.2015.09.033
  274. Saghai, Y. (2021). Subversive Future Seeks Like-Minded Model: On the Mismatch between Visions of Food Sovereignty Futures and Quantified Scenarios of Global Food Futures. Ethics and International Affairs, 35(1), 51–67. https://doi.org/10.1017/S0892679421000071
  275. Saj, S., Torquebiau, E., Hainzelin, E., Pages, J., & Maraux, F. (2017). The way forward: An agroecological perspective for Climate-Smart Agriculture. Agriculture, Ecosystems and Environment, 250, 20–24. https://doi.org/10.1016/j.agee.2017.09.003
  276. Salaheen, S., & Biswas, D. (2019). Organic farming practices: Integrated culture versus monoculture. In Safety and Practice for Organic Food (pp. 23–32). Elsevier. https://doi.org/10.1016/B978-0-12-812060-6.00002-7
  277. Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M., & West, P. C. (2016). Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters, 11(12), 124010. https://doi.org/10.1088/1748-9326/11/12/124010
  278. Sánchez-Guillén, R. A., Córdoba-Aguilar, A., Hansson, B., Ott, J., & Wellenreuther, M. (2016). Evolutionary consequences of climate-induced range shifts in insects. Biological Reviews, 91(4), 1050–1064. https://doi.org/10.1111/BRV.12204
  279. Sarker, P. K., Rahman, M. M., & Das, B. C. (2007). Effect of intercropping of mustard with onion and garlic on aphid population and yield. Journal of Biological Science, 15, 35-40. http://www.banglajol.info/index.php/JBS/index
  280. Sasidharan, R., & Voesenek, L. A. C. J. (2015). Ethylene-Mediated Acclimations to Flooding Stress. Plant Physiology, 169(1), 3–12. https://doi.org/10.1104/PP.15.00387
  281. Savci, S. (2012). An Agricultural Pollutant: Chemical Fertilizer. International Journal of Environmental Science and Development, 73–80. https://doi.org/10.7763/IJESD.2012.V3.191
  282. Schoeny, A., Jumel, S., Rouault, F., Lemarchand, E., & Tivoli, B. (2010). Effect and underlying mechanisms of pea-cereal intercropping on the epidemic development of ascochyta blight. European Journal of Plant Pathology, 126(3), 317–331. https://doi.org/10.1007/s10658-009-9548-6
  283. Sekine, T., Masuda, T., & Inawashiro, S. (2021). Suppression effect of intercropping with barley on Thrips tabaci (Thysanoptera: Thripidae) in onion fields. Applied Entomology and Zoology, 56(1), 59–68. https://doi.org/10.1007/s13355-020-00708-4
  284. Sélingué, M. (2007). Forum for food sovereignty. Declaration of Nyéléni, 27 February.
  285. Šeremešić, S., Šeremešić, S., Manojlović, M., Ilin, Ž., Vasić, M., Gvozdanović-Varga, J., Subašić, A., & Vojnov, B. (2018). Effect of intercropping on the morphological and nutritional properties of carrots and onions in organic agriculture. Journal on Processing and Energy in Agriculture, 22, 80–84. https://doi.org/10.5937/JPEA1802080S
  286. Shah, T. M., Tasawwar, S., Bhat, M. A., & Otterpohl, R. (2021). Intercropping in rice farming under the system of rice intensification—an agroecological strategy for weed control, better yield, increased returns, and social–ecological sustainability. Agronomy, 11(5). https://doi.org/10.3390/agronomy11051010
  287. Shahzad, K., Sintim, H., Ahmad, F., Abid, M., & Nasim, W. (2022). Importance of Carbon Sequestration in the Context of Climate Change. Building Climate Resilience in Agriculture (pp. 385–401). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-79408-8_23
  288. Sharma, A. (2017). A Review on the Effect of Organic and Chemical Fertilizers on Plants. International Journal for Research in Applied Science and Engineering Technology, V(II), 677–680. https://doi.org/10.22214/ijraset.2017.2103
  289. Sharma, R., Chauhan, S. K., & Tripathi, A. M. (2016). Carbon sequestration potential in agroforestry system in India: an analysis for carbon project. Agroforestry Systems, 90(4), 631–644. https://doi.org/10.1007/s10457-015-9840-8
  290. Shattuck, A. (2021). Generic, growing, green?: The changing political economy of the global pesticide complex. The Journal of Peasant Studies, 48(2), 231–253.
  291. Shen, W., Ni, Y., Gao, N., Bian, B., Zheng, S., Lin, X., & Chu, H. (2016). Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Applied Soil Ecology, 108, 76–83. https://doi.org/10.1016/J.APSOIL.2016.08.005
  292. Shepherd, M. A., Harrison, R., & Webb, J. (2006). Managing soil organic matter - implications for soil structure on organic farms. Soil Use and Management, 18, 284–292. https://doi.org/10.1111/j.1475-2743.2002.tb00270.x
  293. Shiming, L., & Gliessman, S. R. (2017). Agroecology in China: Science, Practice, and Sustainable Management. Agroecology and Sustainable Food Systems, 1–2. https://doi.org/10.1080/21683565.2017.1358961
  294. Shrestha, S. (2019). Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3(12), 74–80.
  295. Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., & Van Diemen, R. (2019). IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
  296. Silici, L. (2014). Agroecology What it is and what it has to offer. www.iied.org
  297. Singh, D., Thapa, S., Geat, N., Mehriya, M. L., & Rajawat, M. V. S. (2021). Biofertilizers: Mechanisms and application. Biofertilizers (pp. 151–166). Elsevier. https://doi.org/10.1016/B978-0-12-821667-5.00024-5
  298. Singh Malhi, G., Kaur, M., & Kaushik, P. (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318
  299. Sirami, C., Gross, N., Baillod, A. B., Bertrand, C., Carrié, R., Hass, A., Henckel, L., Miguet, P., Vuillot, C., & Alignier, A. (2019). Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences, 116(33), 16442–16447. https://doi.org/10.1073/pnas.19064191
  300. Skorupka, M., Nosalewicz, A., Krasilnikov, P., & Taboada, M. A. (2021). Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture, 11(9), 822. https://doi.org/10.3390/AGRICULTURE11090822
  301. Smith, L. G., Williams, A. G., & Pearce, B. D. (2015). The energy efficiency of organic agriculture: A review. Renewable Agriculture and Food Systems, 30(3), 280–301. https://doi.org/10.1017/S1742170513000471
  302. Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences, 107(48), 20840–20845. https://doi.org/10.1073/pnas.10071991
  303. Solanki, M. K., Wang, F. Y., Li, C. N., Wang, Z., Lan, T. J., Singh, R. K., Singh, P., Yang, L. T., & Li, Y. R. (2020). Impact of Sugarcane–Legume Intercropping on Diazotrophic Microbiome. Sugar Tech, 22(1), 52–64. https://doi.org/10.1007/s12355-019-00755-4
  304. Somarriba, E. (1992). Revisiting the past: an essay on agroforestry definition. Agroforestry Systems, 19(3), 233–240. https://doi.org/10.1007/BF00118781
  305. Sommer, S. G., Olesen, J., Petersen, S. O., Weisbjerg, M., Valli, L., Rodhe, L., & Béline, F. (2009). Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones. Global Change Biology, 15(12), 2825–2837. https://doi.org/10.1111/j.1365-2486.2009.01888.x
  306. Soriano-Martín, M. L., Porras-Piedra, A., & Porras-Soriano, A. (2006). Use of microwaves in the prevention of Fusarium oxysporum f. sp. melonis infection during the commercial production of melon plantlets. Crop Protection, 25(1), 52–57. https://doi.org/10.1016/j.cropro.2005.03.016
  307. Steenwerth, K., & Belina, K. M. (2008). Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Applied Soil Ecology, 40(2), 370–380. https://doi.org/10.1016/j.apsoil.2008.06.004
  308. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855
  309. Strom, N., Hu, W., Haarith, D., Chen, S., & Bushley, K. (2020). Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology, 147, 103388. https://doi.org/10.1016/J.APSOIL.2019.103388
  310. Suarez, A., Conservation, W. G.-B., & 2023, undefined. (2023). On the relation between monocultures and ecosystem services in the Global South: A review. Elsevier, 278, 109870. https://doi.org/10.1016/j.biocon.2022.109870
  311. Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., & Pacala, S. W. (2014). Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change, 4(12), 1099–1102. https://doi.org/10.1038/nclimate2436
  312. Sun, T., Zhao, C., Feng, X., Yin, W., Gou, Z., Lal, R., Deng, A., Chai, Q., Song, Z., & Zhang, W. (2021). Maize-based intercropping systems achieve higher productivity and profitability with lesser environmental footprint in a water-scarce region of northwest China. Food and Energy Security, 10(1). https://doi.org/10.1002/FES3.260
  313. Tang, X., Jiang, J., Huang, Z., Wu, H., Wang, J., He, L., Xiong, F., Zhong, R., Liu, J., Han, Z., Tang, R., & He, L. (2021). Sugarcane/peanut intercropping system improves the soil quality and increases the abundance of beneficial microbes. Journal of Basic Microbiology, 61(2), 165–176. https://doi.org/10.1002/jobm.202000750
  314. Tang, X., Zhang, Y., Jiang, J., Meng, X., Huang, Z., Wu, H., He, L., Xiong, F., Liu, J., Zhong, R., Han, Z., & Tang, R. (2021). Sugarcane/peanut intercropping system improves physicochemical properties by changing N and P cycling and organic matter turnover in root zone soil. PeerJ, 9, e10880. https://doi.org/10.7717/peerj.10880
  315. Taschen, E., Amenc, L., Tournier, E., Deleporte, P., Malagoli, P., Fustec, J., Bru, D., Philippot, L., & Bernard, L. (2017). Cereal-legume intercropping modifies the dynamics of the active rhizospheric bacterial community. Rhizosphere, 3, 191–195. https://doi.org/10.1016/J.RHISPH.2017.04.011
  316. Tetteh, E. N., Owusu Danquah, E., Abunyewa, A. A., Melenya Ocansey, C., Boakye, E. A., Tuffour, H. O., Logah, V., Twum-Ampofo, K., Dzomeku, B. M., Yeboah, S., & Barnes, V. R. (2021). Plantain-Tree Rubber Intercropping Systems Improved Productivity in the Tropical Humid Zone of Ghana, West Africa. International Journal of Agronomy, 1–16. https://doi.org/10.1155/2021/3240686
  317. Thiesen, T., Bhat, M. G., Liu, H., & Rovira, R. (2022). An Ecosystem Service Approach to Assessing Agro-Ecosystems in Urban Landscapes. Land, 11(4). https://doi.org/10.3390/land11040469
  318. Tian, X., Li, C., Zhang, M., Wan, Y., Xie, Z., Chen, B., & Li, W. (2018). Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLOS ONE, 13(1), e0189924. https://doi.org/10.1371/JOURNAL.PONE.0189924
  319. Torralba, M., Fagerholm, N., Burgess, P. J., Moreno, G., & Plieninger, T. (2016). Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment, 230, 150–161. https://doi.org/10.1016/j.agee.2016.06.002
  320. Utomo, B., Prawoto, A. A., Bonnet, S., Bangviwat, A., & Gheewala, S. H. (2016). Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. Journal of Cleaner Production, 134(Part B), 583–591. https://doi.org/10.1016/j.jclepro.2015.08.102
  321. Vaarst, M., & Alrøe, H. F. (2012). Concepts of animal health and welfare in organic livestock systems. Journal of Agricultural and Environmental Ethics, 25(3), 333–347. https://doi.org/10.1007/s10806-011-9314-6
  322. Valenzuela, H. (2016). Agroecology: A global paradigm to challenge mainstream industrial agriculture. Horticulturae, 2(1), 2. https://doi.org/10.3390/horticulturae2010002
  323. van de Wiel, C. C. M., van der Linden, C. G., & Scholten, O. E. (2016). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 207(1), 1–22. https://doi.org/10.1007/S10681-015-1572-3
  324. van der Bom, F., Nunes, I., Raymond, N. S., Hansen, V., Bonnichsen, L., Magid, J., Nybroe, O., & Jensen, L. S. (2018). Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field. Soil Biology and Biochemistry, 122, 91–103. https://doi.org/10.1016/j.soilbio.2018.04.003
  325. Vandenberghe, C., Palm, R., Lambert, R., Detoffoli, M., & Marcoen, J. M. (2012). Implementation of the Nitrates Directive. Analysis of the assessment’s methodology for the control of the soil nitrate nitrogen residue in the farm’s fields of Wallonia. Biotechnologie, Agronomie, Société et Environnement, 16(1), 25–32.
  326. Varghese, S., & Hansen-Kuhn, K. (2013). Scaling up agroecology: Towards the realization of the right to food. Institute for Agriculture and Trade Policy. Institute for Agriculture and Trade Policy.
  327. Verma, S., Subehia, S. K., & Sharma, S. P. (2005). Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 41(4), 295–300. https://doi.org/10.1007/s00374-004-0810-y
  328. Vicente-Vicente, J. L., García-Ruiz, R., Francaviglia, R., Aguilera, E., & Smith, P. (2016). Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment, 235, 204–214. https://doi.org/https://doi.org/10.1016/j.agee.2016.10.024
  329. Vodounou, J. B. K., & Doubogan, Y. O. (2016). Agriculture paysanne et stratégies d’adaptation au changement climatique au Nord- Bénin. CyberGeo. https://doi.org/10.4000/cybergeo.27836
  330. Vogel, A., Scherer-Lorenzen, M., & Weigelt, A. (2012). Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE, 7(5). https://doi.org/10.1371/JOURNAL.PONE.0036992
  331. Wang, T., Duan, Y., Liu, G., Shang, X., Liu, L., Zhang, K., Li, J., Zou, Z., Zhu, X., & Fang, W. (2022). Tea plantation intercropping green manure enhances soil functional microbial abundance and multifunctionality resistance to drying-rewetting cycles. Science of The Total Environment, 810, 151282. https://doi.org/10.1016/j.scitotenv.2021.151282
  332. Wasaya, A., Ahmad, R., Hassan, F. U., Ansar, M., Manaf, A., & Sher, A. (2013). Enhancing crop productivity through wheat (Triticum aestivum L.)-fenugreek intercropping system. J. Anim. Plant Sci, 23(1), 210–215.
  333. Wezel, A. (2017). Agroecological practices for sustainable agriculture: principles, applications, and making the transition. World Scientific.
  334. Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a science, a movement and a practice. A review. Agronomy for Sustainable Development, 29(4), 503–515. https://doi.org/10.1051/agro/2009004
  335. Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), 1–20. https://doi.org/https://doi.org/10.1007/s13593-013-0180-7
  336. Wezel, A., Herren, B. G., Kerr, R. B., Barrios, E., Gonçalves, A. L. R., & Sinclair, F. (2020). Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agronomy for Sustainable Development, 40(6). https://doi.org/10.1007/S13593-020-00646-Z
  337. Wezel, A., & Jauneau, J.-C. (2011). Agroecology – Interpretations, Approaches and Their Links to Nature Conservation. Integrating agriculture, conservation and ecotourism: Examples from the field, 1-25. https://doi.org/10.1007/978-94-007-1309-3_1
  338. Wezel, A., & Silva, E. (2017). Agroecology and agroecological cropping practices. In Agroecological Practices for Sustainable Agriculture: Principles, Applications, and Making the Transition (pp. 19–51).
  339. Wheeler, S. A., Zuo, A., & Loch, A. (2015). Watering the farm: Comparing organic and conventional irrigation water use in the Murray–Darling Basin, Australia. Ecological Economics, 112, 78–85. https://doi.org/10.1016/j.ecolecon.2015.02.019
  340. Wibbelmann, M., Schmutz, U., Wright, J., Udall, D., Rayns, F., Kneafsey, M., Trenchard, L., Bennett, J., & Turner, M. L. (2013). Mainstreaming agroecology: Implications for global food and farming systems. Centre for Agroecology and Food Security, Coventry University. http://www.fao.org/agroecology/database/detail/en/c/455332/
  341. Willey, R. W. (1990). Resource use in intercropping systems. Agricultural Water Management, 17(1–3), 215–231. https://doi.org/10.1016/0378-3774(90)90069-B
  342. Willey, R. W., & Rao, M. R. (1980). A competitive ratio for quantifying competition between intercrops. Experimental Agriculture, 16(2), 117–125. https://doi.org/10.1017/S0014479700010802
  343. Wojtkowski, P. (2019). Productive Intercropping. Agroecology (pp. 75–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-93209-5_5
  344. Woźniak, A. (2020). Effect of Cereal Monoculture and Tillage Systems on Grain Yield and Weed Infestation of Winter Durum Wheat. International Journal of Plant Production, 14(1), 1–8. https://doi.org/10.1007/s42106-019-00062-8
  345. Wright, A. J., de Kroon, H., Visser, E. J. W., Buchmann, T., Ebeling, A., Eisenhauer, N., Fischer, C., Hildebrandt, A., Ravenek, J., Roscher, C., Weigelt, A., Weisser, W., Voesenek, L. A. C. J., & Mommer, L. (2017). Plants are less negatively affected by flooding when growing in species-rich plant communities. New Phytologist, 213(2), 645–656. https://doi.org/10.1111/NPH.14185
  346. Wu, H., Zhang, Z., Wang, J., Qin, X., Chen, J., Wu, L., Lin, S., Rensing, C., & Lin, W. (2021). Bio-Fertilizer Amendment Alleviates The Replanting Disease By Reshaping Leaf And Root Microbiome. Microbial ecology, 1-13. https://doi.org/10.21203/rs.3.rs-582632/v1
  347. Wu, S., Thapa, B., Rivera, C., & Yuan, Y. (2021). Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge. Journal of Environmental Chemical Engineering, 9(2), 104761. https://doi.org/10.1016/J.JECE.2020.104761
  348. Xiong, W., Li, Z., Liu, H., Xue, C., Zhang, R., Wu, H., Li, R., & Shen, Q. (2015). The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing. PloS one, 10(8), e0136946. https://doi.org/10.1371/journal.pone.0136946
  349. Xiong, W., Zhao, Q., Zhao, J., Xun, W., Li, R., Zhang, R., Wu, H., & Shen, Q. (2015). Different Continuous Cropping Spans Significantly Affect Microbial Community Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing. Microbial Ecology, 70(1), 209–218. https://doi.org/10.1007/s00248-014-0516-0
  350. Xu, Y., Tang, H., Xiao, X., Li, W., Li, C., Sun, G., & Cheng, K. (2018). Effects of long-term fertilization management practices on soil microbial carbon and microbial biomass in paddy soil at various stages of rice growth. Revista Brasileira de Ciencia Do Solo, 42. https://doi.org/10.1590/18069657rbcs20170111
  351. Xu, Z., Li, C., Zhang, C., Yu, Y., van der Werf, W., & Zhang, F. (2020). Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 246, 107661. https://doi.org/10.1016/j.fcr.2019.107661
  352. Yadav, S., & Anand, S. (2022). Green revolution and food security in India: a review. National Geographical Journal of India, 65(3), 312–323.
  353. Yu, T., Mahe, L., Li, Y., Wei, X., Deng, X., & Zhang, D. (2022). Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy, 12(2), 436. https://doi.org/10.3390/agronomy12020436
  354. Zhang, F., & Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 248, 305–312. https://doi.org/10.1023/A:1022352229863
  355. Zhang, R., Meng, L., Li, Y., Wang, X., Ogundeji, A. O., Li, X., Sang, P., Mu, Y., Wu, H., & Li, S. (2021). Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food and Energy Security, 10(2), 379–393.
  356. Zhang, X., Teng, Z., Zhang, H., Cai, D., Zhang, J., Meng, F., & Sun, G. (2021). Nitrogen application and intercropping change microbial community diversity and physicochemical characteristics in mulberry and alfalfa rhizosphere soil. Journal of Forestry Research, 32(5), 2121–2133. https://doi.org/10.1007/s11676-020-01271-y
  357. Zhao, Q., Xiong, W., Xing, Y., Sun, Y., Lin, X., & Dong, Y. (2018). Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities. Scientific Reports, 8(1), 6116. https://doi.org/10.1038/s41598-018-24537-2
  358. Zhou, L., Wang, Y., Xie, Z., Zhang, Y., Malhi, S. S., Guo, Z., Qiu, Y., & Wang, L. (2018). Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. Journal of Basic Microbiology, 58(10), 892–901. https://doi.org/10.1002/jobm.201800163
  359. Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., & Shu, K. (2020). Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry, 148, 228–236. https://doi.org/10.1016/J.PLAPHY.2020.01.020
  360. Ziaie-Juybari, H., Pirdashti, H., Abo-Elyousr, K. A. M., & Mottaghian, A. (2021). Abiotic benefits of intercropping legumes and maize to reduce pests. Archives of Phytopathology and Plant Protection, 54(17–18), 1539–1552. https://doi.org/10.1080/03235408.2021.1919592
  361. Zwicke, M., Alessio, G. A., Thiery, L., Falcimagne, R., Baumont, R., Rossignol, N., ... & Picon‐Cochard, C. (2013). Lasting effects of climate disturbance on perennial grassland above‐ground biomass production under two cutting frequencies. Global Change Biology, 19(11), 3435-3448. https://doi.org/10.1111/gcb.12317
  362. Zyada, H. G., Mohsen, A. A. M., & Nosir, W. S. (2022). Using intercropping systems to obtain high yield and good competitive indices of fennel and onion under different potassium fertilizer levels. Zagazig Journal of Agricultural Research, 49(2), 193–207.