Vol. 117 No. 2 (2023)
Research Papers

Diagnosis of nutrient imbalance and interactions in wheat and faba bean in Kharga Oasis, Egypt

Ali Ali
Department of Soil Fertility and Microbiology, Desert Research Center, Cairo 11753, Egypt
Safwat Abdelhamid
Department of Plant Production, Desert Research Center, Cairo 11753, Egypt
Ashraf El-Sadek
Department of Plant Production, Desert Research Center, Cairo 11753, Egypt
Emad Salem
Department of Plant Production, Desert Research Center, Cairo 11753, Egypt

Published 2023-12-29


  • Nutritional imbalance,
  • nutrient interactions,
  • compositional nutrient diagnosis,
  • principal component analysis,
  • wheat,
  • faba bean,
  • hyper-arid environment
  • ...More

How to Cite

Ali, A., Abdelhamid, S., El-Sadek, A., & Salem, E. (2023). Diagnosis of nutrient imbalance and interactions in wheat and faba bean in Kharga Oasis, Egypt. Journal of Agriculture and Environment for International Development (JAEID), 117(2), 23–40. https://doi.org/10.36253/jaeid-14528


Imbalanced nutrition has a major impact on crop productivity, particularly in hyper-arid environments, and precise interpretation is essential for designing appropriate nutrient management strategies. Compositional nutrient diagnosis (CND) was used to identify nutritional imbalances of multiple nutrients (N, P, K, Ca, Mg, Fe, Mn, Zn, and Cu) in wheat and faba bean cultivated in Kharga Oasis, Egypt. Significant nutrient interactions were also assessed using principal component analysis. Due to large differences in water and soil characteristics, wheat and faba bean yields from the surveyed area varied greatly, ranging from 2118 to 8211 and 1373 to 4962 kg ha-1, respectively. The CND indexes for the low-yield subpopulation of wheat were negative for P, Ca, and Zn, with average values of -0.82, -2.66, and -1.26, but positive for K, Mg, Fe, and Mn with average values of 4.80, 4.92, 1.70, and 0.57, respectively. In faba bean, N, P, Ca, and Zn were negative, with average values of -1.73, -0.67, -8.19, and -1.41, but K, Mg, Fe, Mn, and Cu were positive with average values of 2.62, 0.50, 1.32, 1.10, and 0.40, respectively. Synergistic interactions P-Zn and Mg-Fe, as well as antagonistic interactions P-Mg, P-Fe, Zn-Fe, Zn-Mg, Ca-Cu, N-Mn, Mn-Cu, and P-Ca, were evident from the principal component analysis of the data. This investigation reveals that the decline in crop yields in the study area is due to nutritional imbalance induced by a deficiency of Ca, Zn, and P and a surplus of Mg, K, Fe, and Mn, in addition to nutrient antagonism.



  1. Abd-Alla, M.H. 1992. Nodulation and nitrogen fixation in faba bean (Vicia faba L.) plants under salt stress. Symbiosis, 12: 311–319.
  2. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2): 139-160.
  3. Ali, A.M. (2018). Nutrient sufficiency ranges in mango using boundary-line approach and compositional nutrient diagnosis norms in El-Salhiya, Egypt. Communications in Soil Science and Plant Analysis, 49(2): 188-201.
  4. Ali, A.M. (2023). Establishment of nutrient sufficiency ranges in olive using boundary-line approach. Journal of Plant Nutrition, 46(3): 453-461.
  5. Alloway, B.J. (2008). Zinc in soils and crop nutrition. published by IZA and IFA. Brussels, Belgium and Paris, France, 139.
  6. Ayed, I.A. (1970). A study of the mobilization of iron in tomato roots by chelate treatments. Plant and Soil, 32(1): 18-26.
  7. Barłóg, P. (2016). Diagnosis of sugar beet (Beta vulgaris L.) nutrient imbalance by DRIS and CND-clr methods at two stages during early growth. Journal of Plant Nutrition, 39(1): 1-16.
  8. Bates, T.E. (1971). Factors affecting critical nutrient concentrations in plants and their evaluation: A review. Soil Science, 112(2): 116-130.
  9. Bélanger, M.C., Viau, A.A., Samson, G. & Chamberland, M. (2005). Determination of a multivariate indicator of nitrogen imbalance (MINI) in potato using reflectance and fluorescence spectroscopy. Agronomy Journal, 97(6): 1515-1523.
  10. Bello, S.K., Alayafi, A.H., AL-Solaimani, S.G., & Abo-Elyousr. K.A. (2021). Mitigating soil salinity stress with gypsum and bio-organic amendments: A review. Agronomy, 11(9), 1735.
  11. Blanco‐Macías, F., Magallanes‐Quintanar, R. Valdez‐Cepeda, R.D., Vázquez‐Alvarado, Olivares‐Sáenz, Gutiérrez‐Ornelas, R. E. E. J.A. Vidales‐Contreras, & Murillo‐Amador., B. (2010). Nutritional reference values for Opuntia ficus‐indica determined by means of the boundary‐line approach. Journal of Plant Nutrition and Soil Science, 173(6): 927-934.
  12. Cabot, C., Sibole, J.V. Barceló, J., & Poschenrieder, C. (2009). Sodium‐calcium interactions with growth, water, and photosynthetic parameters in salt‐treated beans. Journal of Plant Nutrition and Soil Science, 172(5): 637-643.
  13. Canizella, B.T., Sousa, J.A. Moreira, A. & Moraes, L.A. (2018). Magnesium and zinc interaction in four soybean cultivars with different nutritional requirements. Journal of Plant Nutrition, 41(17): 2189-2199.
  14. Cramer, G.R. (2002). Sodium-calcium interactions under salinity stress. In Salinity: Environment-plants-molecules (pp. 205-227). Springer, Dordrecht.
  15. Dahnke, W.C., & Johnson, G.V. (1990). Testing soils for available nitrogen. Soil Testing and Plant Analysis, 3: 127-139.
  16. Das, K., Dang, R. Shivananda, T.N., & Sur, P. (2005). Interaction between phosphorus and zinc on the biomass yield and yield attributes of the medicinal plant stevia (Stevia rebaudiana). The Scientific World Journal, 5: 390-395.
  17. Dezordi, L.R., Aquino, L.A.D. Aquino, R.F.B.D.A. Clemente, J.M., & Assunção, N.S. (2016). Diagnostic methods to assess the nutritional status of the carrot crop. Revista Brasileira de Ciência do Solo, 40.
  18. Dixon, W., & Chiswell, B. (1992). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 135(1-4): 259-274.
  19. Fageria, N.K., & Baligar, V.C. (1999). Growth and nutrient concentrations of common bean, lowland rice, corn, soybean, and wheat at different soil pH on an Inceptisol. Journal of Plant Nutrition, 22(9): 1495-1507.
  20. Fageria, N.K., Gheyi, H.R, & Moreira, A. (2011). Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34(7): 945-962.
  21. Fageria, V.D. (2001). Nutrient interactions in crop plants. Journal of Plant Nutrition, 24(8): 1269-1290.
  22. FAO. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and Agriculture Organization of the United Nations.
  23. FAOSTAT. (2022). Available online at: https://www.fao.org/faostat/en/#home (accessed 15 December 2022).
  24. García-Hernández, J.L., Valdez-Cepeda, R.D., Murillo-Amador, B., Beltrán-Morales, F.A., Ruiz-Espinoza, F.H., Orona-Castillo, I., Flores-Hernández, A., & Troyo-Diéguez, E. (2006). Preliminary compositional nutrient diagnosis norms in Aloe vera L. grown on calcareous soil in an arid environment. Environmental and Experimental Botany, 58(1-3): 244-252.
  25. Gee, G.W., & Bauder, J.W. (1986). Particle Size Analysis. P.404-408. In A. Klute (ed.) Methods of Soil Analysis. Part 1. 2nd ed. Agron. Monoger. No. 9 ASA and SSSA, Madison, WI.
  26. Gott, R.M., Aquino, L.A., Clemente, J.M., Santos, L.P.D.D., Carvalho, A.M.X., & Xavier, F.O. (2017). Foliar diagnosis indexes for corn by the methods diagnosis and recommendation integrated system (DRIS) and nutritional composition (CND). Communications in Soil Science and Plant Analysis, 48(1): 11-19.
  27. Grattan, S.R., & Grieve, C.M. (1998). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1-4): 127-157.
  28. Grattan, S.R. (1994). Mineral element acquisition and response of plants grown in saline environment. Handbook of Plant and Crop Stress: 203-227.
  29. Gupta, U.C. (1972). Effects of manganese and lime on yield and on the concentrations of manganese, molybdenum, boron, copper and iron in the boot stage tissue of barley. Soil Science, 114(2): 131-136.
  30. Hagemeyer, J. (2004). Ecophysiology of plant growth under heavy metal stress. In Heavy metal stress in plants (pp. 201-222). Springer, Berlin, Heidelberg.
  31. Harrison, S.J., Lepp, N.W., & Phipps, D.A. (1983). Copper uptake by excised roots: III. Effect of manganese on copper uptake. Zeitschrift für Pflanzenphysiologie, 109(4): 285-289.
  32. Hernández-Caraballo, E.A., Rodríguez-Rodríguez, O., & Rodríguez-Pérez, V. (2008). Evaluation of the Boltzmann equation as an alternative model in the selection of the high-yield subsample within the framework of the compositional nutrient diagnosis system. Environmental and Experimental Botany, 64(3): 225-231.
  33. Jones Jr, J.B. ed. (1999). Soil analysis handbook of reference methods. CRC press.
  34. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants CRC Press Inc. Boca Raton, FL, USA.
  35. Kalra, Y. ed. (1997). Handbook of reference methods for plant analysis. Boca Raton, FL: CRC press.
  36. Kawasaki, T., & Moritsugu, M. (1987). Effect of calcium on the absorption and translocation of heavy metals in excised barley roots: multi-compartment transport box experiment. In Plant and soil interfaces and interactions (pp. 21-34). Springer, Dordrecht.
  37. Khiari, L., Parent, L.E., Tremblay, N. (2001). Selecting the high‐yield subpopulation for diagnosing nutrient imbalance in crops. Agronomy Journal, 93(4): 802-808.
  38. Korkmaz, K., Akgün, M., Özcan, M.M., Özkutlu, F., & Kara, Ş.M. (2021). Interaction effects of phosphorus (P) and zinc (Zn) on dry matter, concentration and uptake of P and Zn in chia. Journal of Plant Nutrition, 44(5): 755-764.
  39. Kremper, R., Zsigrai, G., Kovács, A.B., & Loch, J. (2015). Long-term effect of high phosphorus doses on zinc status of maize on a non-calcareous loamy soil. Plant, Soil and Environment, 61(1): 1-5.
  40. Liu, C., Zhao, X., Yan, J., Yuan, Z., & Gu, M. (2019). Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy, 10(1), 27.
  41. Magallanes-Quintanar, R., Valdez-Cepeda, R.D., Olivares-Sáenz, E., Pérez-Veyna, O., García-Hernández, J.L., & Lopez-Martinez, J.D. 2006. Compositional nutrient diagnosis in maize grown in a calcareous soil. Journal of Plant Nutrition, 29(11): 2019-2033.
  42. Mandal, B., Hazra, G.C., & Mandal, L.N. (2000). Soil management influences on zinc desorption for rice and maize nutrition. Soil Science Society of America Journal, 64(5): 1699-1705.
  43. Marschner, H. ed. (2011). Marschner's mineral nutrition of higher plants. Academic press.
  44. Moreira, A., Malavolta, E., Heinrichs, R., & Tanaka, R.T. (2003). Magnesium influence on manganese and zinc uptake by excised roots of soybean. Pesquisa Agropecuária Brasileira, 38: 95-101.
  45. Mourão Filho, F.D.A.A. (2004). DRIS: Concepts and applications on nutritional diagnosis in fruit crops. Scientia Agricola, 61: 550-560.
  46. Mousavi, S.R., Galavi, M., & Rezaei, M. (2012). The interaction of zinc with other elements in plants: a review. International Journal of Agriculture and Crop Sciences, 4(24): 1881-1884.
  47. Naeini, M.R., Khoshgoftarmanesh, A.H., Lessani, H., & Fallahi, E. (2005). Effects of sodium chloride-induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. Journal of Plant Nutrition, 27(8): 1319-1326.
  48. Nautiyal, N., & Chatterjee, C. (2002). Copper–manganese interaction in cauliflower. Journal of Plant Nutrition, 25(8): 1701-1707.
  49. Osman, K.T. (2018). Saline and sodic soils. In Management of soil problems (pp. 255-298). Springer, Cham.
  50. Österås, A.H., & Greger, M. (2006). Interactions between calcium and copper or cadmium in Norway spruce. Biologia Plantarum, 50(4): 647-652.
  51. Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of soil analysis, part 2: Chemical and microbiological properties. Madison WI: American Society of Agronomy. In Soil Science Society of America: 595-624.
  52. Parent, L.E., & Dafir, M. (1992). A theoretical concept of compositional nutrient diagnosis. Journal of the American Society for Horticultural Science, 117(2): 239-242.
  53. Parent, L.É. (2011). Diagnosis of the nutrient compositional space of fruit crops. Revista Brasileira de Fruticultura, 33: 321-334.
  54. Parent, L.E., Cambouris, A.N. & Muhawenimana, A. (1994). Multivariate diagnosis of nutrient imbalance in potato crops. Soil Science Society of America Journal, 58(5): 1432-1438.
  55. Parent, L.E., Karam, A. & Visser, S.A. (1993). Compositional nutrient diagnosis of the greenhouse tomato. HortScience, 28(10): 1041-1042.
  56. Parent, S.É., Parent, L.E., Egozcue, J.J., Rozane, D.E., Hernandes, A., Lapointe, L., Hébert-Gentile, V., Naess, K., Marchand, S., Lafond, J., & Mattos Jr, D. (2013). The plant ionome revisited by the nutrient balance concept. Frontiers in Plant Science, 4, 39.
  57. Parent, S.E., Parent, L.E., Rozanne, D.E., Hernandes, A., & Natale, W. (2012). Nutrient balance as paradigm of soil and plant chemometrics. Soil fertility. New York: InTech Publications: 83-114.
  58. Prasad, R., Shivay, Y.S., & Kumar, D. (2016). Interactions of zinc with other nutrients in soils and plants-A Review. Indian Journal of Fertilisers, 12(5): 16-26.
  59. Raghupathi, H.B., Reddy, B.M.C., & Srinivas, K. (2002). Multivariate diagnosis of nutrient imbalance in banana. Communications in Soil Science and Plant Analysis, 33(13-14): 2131-2143.
  60. Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7): 613-620.
  61. Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Salinity Laboratory Staff, Washington.
  62. Serra, A.P., Marchetti, M.E., Vitorino, A.C.T., Novelino, J.O., & Camacho, M.A. (2010). Determination of normal nutrient ranges for cotton by the ChM, CND and DRIS methods. Revista Brasileira de Ciência do Solo, 34: 105-113.
  63. Silva, E.N., Silveira, J.A.G., Rodrigues, C.R.F., & Viégas, R.A. (2015). Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Plant Biology, 17(5): 1023-1029.
  64. Silva, G.G.C.D., Neves, J.C.L., Alvarez V, V.H., & Leite, F.P. (2004). Nutritional diagnosis for eucalypt by DRIS, M-DRIS, and CND. Scientia Agricola, 61: 507-515.
  65. Solomons, N.W., & Ruz, M. (1997). Zinc and iron interaction: concepts and perspectives in the developing world. Nutrition Research, 17(1): 177-185.
  66. Soltanpour, P.N. (1991). Determination of nutrient availability and elemental toxicity by AB-DTPA soil test and ICPS. In Advances in Soil Science (pp. 165-190). Springer, New York, NY.
  67. Sun, Y., Niu, G., Masabni, J.G., & Ganjegunte, G. (2018). Relative salt tolerance of 22 pomegranate (Punica granatum) cultivars. HortScience, 53(10): 1513-1519.
  68. Tadayon, M.S., Saghafi, K., & Sadeghi, S. (2022). Determining the compositional nutrient diagnosis (CND) norms and main nutrient interactions in “Valencia” orange orchards on calcareous soils. Journal of Plant Nutrition: 1-16.
  69. Todd, D.K., & L. Mays, W. (2004). Groundwater hydrology. John Wiley & Sons.
  70. Varma, A. (1991). Handbook of inductively coupled plasma atomic emission spectroscopy. Boca Raton, FL: CRC, Inc.
  71. Vizcayno-Soto, G., & Côté, B. (2004). Boundary-line approach to determine standards of nutrition for mature trees from spatial variation of growth and foliar nutrient concentrations in natural environments. Communications in Soil Science and Plant Analysis, 35(19-20): 2965-2985.
  72. Wairegi, L., & van Asten, P. (2011). Norms for multivariate diagnosis of nutrient imbalance in the East African highland bananas (Musa spp. AAA). Journal of Plant Nutrition, 34(10): 1453-1472.
  73. Wairegi, L.W.I., & van Asten. P. (2012). Norms for multivariate diagnosis of nutrient imbalance in arabica and robusta coffee in the east african highlands. Experimental Agriculture, 48(3): 448-460.
  74. Walworth, J.L., & Sumner, M.E. (1987). The diagnosis and recommendation integrated system (DRIS). In Advances in soil science (pp. 149-188). Springer, New York, NY.
  75. Wilding, L.P., Bouma, J., & Goss, D.W. (1994). Impact of spatial variability on interpretive modeling. Quantitative Modeling of Soil Forming Processes, 39: 61-75.
  76. Wilkinson, S.R., Grunes, D.L., & Sumner, M.E. (2000). Nutrient interactions in soil and plant nutrition. Handbook of Soil Science: 89-112.
  77. Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12): 1035-1059.
  78. Zahran, H.H., & Sprent, J.I. (1986). Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta, 167(3): 303-309.