Vol. 118 No. 1 (2024)
Research Papers

The response of maize to combined application of nitrogen and phosphorous fertilizers in the semi-arid conditions of Faisalabad

Anum Ismail
Department of Botany, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
Muhammad Abdullah Saleem
Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
Abid Shehzad
Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
Asif Iqbal
Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
Pakeeza Ahmed Khan
Department of Botany, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
Wajeeh Ur Rehman
Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan
Waqar Akram
Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad 38000, Pakistan

Published 2024-06-28

Keywords

  • Changing environment,
  • Crop nutrition,
  • Nutrients,
  • Crop production,
  • Nutrient use efficiency,
  • Nitrogen,
  • Phosphorus
  • ...More
    Less

How to Cite

Ismail, A., Saleem, M. A., Shehzad, A., Iqbal, A., Ahmed Khan, P., Ur Rehman, W., & Akram, W. (2024). The response of maize to combined application of nitrogen and phosphorous fertilizers in the semi-arid conditions of Faisalabad. Journal of Agriculture and Environment for International Development (JAEID), 118(1), 93–110. https://doi.org/10.36253/jaeid-12340

Abstract

Changes in climate, development of new hybrids and soil fertility status has influenced nutrient application rates worldwide. A field experiment was carried out to determine the response of maize to combined application of nitrogen (N) and phosphorus (P) in the semi-arid conditions of Faisalabad. Research was planned at Agronomic Research Area, University of Agriculture, Faisalabad. The experiment was replicated three times and laid out in randomized complete block design with split plot arrangement keeping a net plot size of 8 m x 3 m. The experiment was comprised of two main factors (i) Nitrogen levels (100, 200 and 300 kg ha-1) and (ii) Phosphorus levels (50, 100 and 150 kg ha-1). Nitrogen doses were kept in main plots, while phosphorous doses in subplots. During experimentation, observations regarding phenology, growth, yield and yield related traits were recorded. Collected data was analysed using Fisher’s analysis of variance technique. MSTAT-C was used for statistical analysis and means were compared at 5% probability level of HSD test. Highest values for parameters were attained where N and P were applied with dose 200 and 150 kg ha-1, respectively. While, minimum values attained where with 100 and 50 kg ha-1 N and P, respectively. Interaction of both remained non-significant.

References

  1. Agrahari, R. K., Kobayashi, Y., Tanaka, T. S. T., Panda, S. K., & Koyama, H. (2021). Smart fertilizer management: the progress of imaging technologies and possible implementation of plant biomarkers in agriculture. Soil Science and Plant Nutrition, 67(3), 248-258. doi:10.1080/00380768.2021.1897479
  2. Ahmad, T., Tahir, M., Saleem, M. A., & Zafar, M. A. (2018). Response of soil application of boron to improve the growth, yield and quality of wheat (Triticum aestivum L.). J. Environ. Agric, 3(2), 313-318.
  3. Ainsworth, E. A., & Bush, D. R. (2010). Carbohydrate Export from the Leaf: A Highly Regulated Process and Target to Enhance Photosynthesis and Productivity. Plant physiology, 155(1), 64-69. doi:10.1104/pp.110.167684
  4. Ariraman, R., Prabhaharan, J., Selvakumar, S., Sowmya, S., & Mansingh, M. D. I. (2020). Effect of nitrogen levels on growth parameters, yield parameters, yield, quality and economics of maize: A review. Journal of Pharmacognosy and Phytochemistry, 9(6), 1558-1563.
  5. Bassi, D., Menossi, M., & Mattiello, L. (2018). Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Scientific Reports, 8(1), 2327. doi:10.1038/s41598-018-20653-1
  6. Biswas Chowdhury, R., & Zhang, X. (2021). Phosphorus use efficiency in agricultural systems: A comprehensive assessment through the review of national scale substance flow analyses. Ecological Indicators, 121, 107172. doi:https://doi.org/10.1016/j.ecolind.2020.107172
  7. Ceulemans, T., Bodé, S., Bollyn, J., Harpole, S., Coorevits, K., Peeters, G., . . . Honnay, O. (2017). Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nature Plants, 3(2), 16224. doi:10.1038/nplants.2016.224
  8. Chughtai, S., Hussain, M., HN, J. H., & Aslam, M. (2002). Changes in maize research priorities in Pakistan and relation to CIMMYTs regional activities. Paper presented at the 8th Asian Regional Maize Workshop, Bangkok, Thailand.
  9. Correndo, A. A., Fernandez, J. A., Vara Prasad, P., & Ciampitti, I. A. (2021). Do water and nitrogen management practices impact grain quality in maize? Agronomy, 11(9), 1851.
  10. Day, A. D., & Ludeke, K. L. (1993). Phosphorus as a Plant Nutrient. In Plant Nutrients in Desert Environments (pp. 45-48). Berlin, Heidelberg: Springer Berlin Heidelberg.
  11. Dupas, E., Buzetti, S., Sarto, A. L., Hernandez, F. B. T., & Bergamaschine, A. F. (2010). Dry matter yield and nutritional value of Marandu grass under nitrogen fertilization and irrigation in cerrado in São Paulo. Revista Brasileira de Zootecnia, 39, 2598-2603.
  12. Fatima, H., Tahir, M., & Saleem, M. A. (2021). Evaluating the effect of foliar applied manganese, iron, zinc and boron at different growth stages of Mash bean [Vigna mungo (L.) Hepper]. Journal of Pure and Applied Agriculture, 6(2), 34-42.
  13. Finzi, A. C., Austin, A. T., Cleland, E. E., Frey, S. D., Houlton, B. Z., & Wallenstein, M. D. (2011). Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Frontiers in Ecology and the Environment, 9(1), 61-67.
  14. Gastal, F., & Lemaire, G. (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot, 53(370), 789-799. doi:10.1093/jexbot/53.370.789
  15. Gheith, E. M. S., El-Badry, O. Z., Lamlom, S. F., Ali, H. M., Siddiqui, M. H., Ghareeb, R. Y., . . . Kandil, E. E. (2022). Maize (Zea mays L.) Productivity and Nitrogen Use Efficiency in Response to Nitrogen Application Levels and Time. Frontiers in Plant Science, 13. doi:10.3389/fpls.2022.941343
  16. Govt. of Pakistan. (2024). Economic survey of Pakistan. Islamabad: Ministry of Fianance
  17. Guo, C., Yuan, X., Yan, F., Xiang, K., Wu, Y., Zhang, Q., . . . Ma, J. (2022). Nitrogen Application Rate Affects the Accumulation of Carbohydrates in Functional Leaves and Grains to Improve Grain Filling and Reduce the Occurrence of Chalkiness. Frontiers in Plant Science, 13. doi:10.3389/fpls.2022.921130
  18. Hammad, H. M., Abbas, F., Ahmad, A., Fahad, S., Laghari, K. Q., Alharby, H., & Farhad, W. (2016). The effect of nutrients shortage on plant’s efficiency to capture solar radiations under semi-arid environments. Environmental Science and Pollution Research, 23, 20497-20505.
  19. Hancock, D. W., Harris, G. H., Franks, R. W., Morgan, S. P., & Green, T. W. (2008). Soil and fertilizer management considerations for forage systems in Georgia (9949316339002959). Retrieved from University of Georgia:
  20. Hasan, M. M., Hasan, M. M., Teixeira da Silva, J. A., & Li, X. (2016). Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cellular & Molecular Biology Letters, 21(1), 7. doi:10.1186/s11658-016-0008-y
  21. Hassan, U. (2005). Growth and yield of two maize (Zea mays L.) cultivars as affected by different level of NPK. M. Sc.(Hons.) Agricultural Thesis. Department of Agronomy, University of Agriculture, Faisalabad.
  22. Hodge, A. (2010). Roots: The Acquisition of Water and Nutrients from the Heterogeneous Soil Environment. In U. Lüttge, W. Beyschlag, B. Büdel, & D. Francis (Eds.), Progress in Botany 71 (pp. 307-337). Berlin, Heidelberg: Springer Berlin Heidelberg.
  23. Hu, B., & Chu, C. (2020). Nitrogen–phosphorus interplay: old story with molecular tale. New Phytologist, 225(4), 1455-1460. doi:https://doi.org/10.1111/nph.16102
  24. Hunt, R. (1978). Plant. Growth Analysis Studies in Biology. Edward Arnold: London, UK, 96, 26-38.
  25. Hussain, J., Khan, F. U., Ullah, R., Muhammad, Z., Rehman, N., Shinwari, Z. K., . . . Hussain, S. M. (2011). Nutrient evaluation and elemental analysis of four selected medicinal plants of Khyber Pakhtoon Khwa, Pakistan. Pak. J. Bot, 43(1), 427-434.
  26. Iqbal, A., Iqbal, M. A., Akram, I., Saleem, M. A., Abbas, R. N., Alqahtani, M. D., . . . Rahim, J. (2023). Phytohormones Promote the Growth, Pigment Biosynthesis and Productivity of Green Gram [Vigna radiata (L.) R. Wilczek]. Sustainability, 15(12), 9548. Retrieved from https://www.mdpi.com/2071-1050/15/12/9548
  27. Kabir, R., Yeasmin, S., Islam, A., & Sarkar, M. R. (2013). Effect of phosphorus, calcium and boron on the growth and yield of groundnut (Arachis hypogea L.). International Journal of Bio-science and bio-Technology, 5(3), 51-60.
  28. Karina, B., Alessandra, A. G., Luciana, G., Waldssimiler, T. d. M., Maria, T. C., & Ivani, P. O. (2014). Influence of nitrogen on the production characteristics of ruzi grass. African Journal of Agricultural Research, 9(5), 533-538.
  29. Kimura, Y., Ushiwatari, T., Suyama, A., Tominaga-Wada, R., Wada, T., & Maruyama-Nakashita, A. (2019). Contribution of root hair development to sulfate uptake in Arabidopsis. Plants, 8(4), 106.
  30. Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K., . . . Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209-219.
  31. Liu, D. (2021). Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 63(6), 1065-1090. doi:https://doi.org/10.1111/jipb.13090
  32. Liu, X., Hu, B., & Chu, C. (2022). Nitrogen assimilation in plants: current status and future prospects. Journal of Genetics and Genomics, 49(5), 394-404. doi:https://doi.org/10.1016/j.jgg.2021.12.006
  33. Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, & B. Hawrylak-Nowak (Eds.), Plant nutrients and abiotic stress tolerance (pp. 171-190). Singapore: Springer Singapore.
  34. Maqsood, M., Abid, A., Iqbal, A., & Hussain, M. I. (2001). Effect of variable rate of nitrogen and phosphorus on growth and yield of maize (golden). Online J. Biol. Sci, 1(1), 19-20.
  35. McMaster, G. S., & Wilhelm, W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and forest meteorology, 87(4), 291-300.
  36. Mu, X., & Chen, Y. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76-82.
  37. Nguyen, G. N., Rothstein, S. J., Spangenberg, G., & Kant, S. (2015). Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front Plant Sci, 6, 629. doi:10.3389/fpls.2015.00629
  38. Oliveira, D. A. d., Bonfim-Silva, E. M., Silveira, C. P., & Monteiro, F. A. (2010). Nutritional value of the Signal grass in the first year of recovery following nitrogen and sulphur applications. Revista Brasileira de Zootecnia, 39, 716-726.
  39. Osborne, S., Schepers, J. S., Francis, D., & Schlemmer, M. R. (2002). Use of spectral radiance to estimate in‐season biomass and grain yield in nitrogen‐and water‐stressed corn. Crop Science, 42(1), 165-171.
  40. Peng, Y., Peng, Z., Zeng, X., & Houx, J. H. (2019). Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective. Plant and Soil, 436, 245-252.
  41. Rouf Shah, T., Prasad, K., & Kumar, P. (2016). Maize—A potential source of human nutrition and health: A review. Cogent Food & Agriculture, 2(1), 1166995.
  42. Saleem, M. A., Iqbal, A., Qurat ul, A., Idrees, M., Hameed, M. U., Shehzad, A., . . . Iqbal, M. A. (2023). Biochar: A Natural Soil Remedy for Sustainable Agricultural Growth- A Critical Review. Jammu Kashmir Journal of Agriculture, 3(2), 131-144. doi:10.56810/jkjagri.003.02.0073
  43. Saleem, M. A., Tahir, M., Ahmad, T., & Tahir, M. N. (2020). Foliar application of boron improved the yield and quality of wheat (Triticum aestivum L.) in a calcareous field. Soil & Environment, 39(1), 59-66.
  44. Shrivastav, P., Prasad, M., Singh, T. B., Yadav, A., Goyal, D., Ali, A., & Dantu, P. K. (2020). Role of Nutrients in Plant Growth and Development. In M. Naeem, A. A. Ansari, & S. S. Gill (Eds.), Contaminants in Agriculture: Sources, Impacts and Management (pp. 43-59). Cham: Springer International Publishing.
  45. Singh, A., Hidangmayum, A., Tiwari, P., kumar, V., Singh, B. N., & Dwivedi, P. (2022). Chapter 5 - How the soil nitrogen nutrient promotes plant growth—a critical assessment. In H. B. Singh & A. Vaishnav (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 99-118): Elsevier.
  46. Tessari, P. (2006). Nitrogen Balance and Protein Requirements: Definition and Measurements. In G. Mantovani, S. D. Anker, A. Inui, J. E. Morley, F. R. Fanelli, D. Scevola, M. W. Schuster, & S.-S. Yeh (Eds.), Cachexia and Wasting: A Modern Approach (pp. 73-79). Milano: Springer Milan.
  47. The, S. V., Snyder, R., & Tegeder, M. (2021). Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.628366
  48. Urban, A., Rogowski, P., Wasilewska-Dębowska, W., & Romanowska, E. (2021). Understanding maize response to nitrogen limitation in different light conditions for the improvement of photosynthesis. Plants, 10(9), 1932.
  49. Vita, F., Taiti, C., Pompeiano, A., Gu, Z., Lo Presti, E., Whitney, L., . . . Ruisi, P. (2016). Aromatic and proteomic analyses corroborate the distinction between Mediterranean landraces and modern varieties of durum wheat. Scientific Reports, 6(1), 34619.
  50. Vos, J., Putten, P. E. L. v. d., & Birch, C. J. (2005). Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Research, 93(1), 64-73. doi:https://doi.org/10.1016/j.fcr.2004.09.013
  51. Watson, D. (1958). The dependence of net assimilation rate on leaf-area index. Annals of Botany, 22(1), 37-54.
  52. Ye, J. Y., Tian, W. H., & Jin, C. W. (2022). Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. Stress Biology, 2(1), 4. doi:10.1007/s44154-021-00030-1
  53. Zhang, S., Liu, Y., Du, M., Shou, G., Wang, Z., & Xu, G. (2022). Nitrogen as a regulator for flowering time in plant. Plant and Soil, 480(1), 1-29. doi:10.1007/s11104-022-05608-w