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Abstract: Our ability to engage in long-term land management solutions that will benefit 
both land and water users is made possible by our understanding of how climate change 
affects sediment yield. This study aimed to determine the spatiotemporal distribution of 
sediment yield in the Andit Tid watershed as well as simulate sediment yield under 
existing and anticipated climate scenarios. SWAT and Arc GIS 10.5 software were used 
to estimate and map the spatial distribution of sediment yield.  The annual average 
estimated sediment yield of the watershed was found to be 17.9 t ha-1 yr-1. The R2 was 
found to be 0.62 and 0.72 during calibration and validation of sediment yield. The 
projected average sediment yield up to 2098 under the wettest scenario is 13.7 t ha-1 in 
RCP 4.5 and 16.1 t ha-1 in RCP 8.5, respectively. It was discovered that, in comparison to 
the current average sediment, the near future (2022–2060) sediment was equal to it in 
RCP 4.5 and decreased by 41% in RCP 8.5, whereas the far future (2061–2098) sediment 
grew by 20.4% in RCP 8.5 and decreased by 35% in RCP 4.5.  Out of the projected 76 
years, 21 and 23 years showed positive deviations from the mean of the existing sediment 
yield under RCP 4.5 and 8.5, respectively. While in the driest scenario, the projected 
sediment yield was lower than the current rate, which was about 4 t ha-1 in both RCPs. In 
both current and future climate scenarios, the northeastern, eastern, and western regions 
were contributing to the higher sediment yield in the watershed. Most of these watershed 
hotspot regions were situated on farmed land with a slope of more than twenty percent 
and active gullies. When developing and executing management solutions in the areas 
that are severely impacted, the watershed community and decision-makers are 
recommended to make use of the spatial distribution map. It is also necessary to take steps 
to lessen the likelihood that the emission scenarios that result in RCP 8.5 will occur.  
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Introduction 

Soil erosion is a major issue in most agroecosystems around the world since it is one of 
the main causes of soil deterioration due to detachment and loss of the topsoil layer (Ahsan 
et al., 2021). Soil degradation affects 1.9 billion hectares and is growing at a pace of 5-7 
million hectares per year globally (IAEA, 2014). Water-induced erosion has been estimated 
to have harmed 11 million km2 of land (Mengie and Teshome, 2019). In Africa, climate 
change and intensive agricultural practices are among the issues that cause soil erosion 
(Temesgen and Amare, 2014).  

Soil erosion causes decreased soil fertility in Sub-Saharan Africa, resulting in negative 
environmental consequences (Mengie and Teshome, 2019). Rainfall runoff-induced soil 
erosion is a major issue in Ethiopia and it is widely regarded as the primary cause of land 
degradation in the country's rain-fed agricultural areas (Belayneh et al., 2020). The problem 
of soil erosion has had a significant influence on the productive highlands, which are 
characterized by rough topography, densely populated, intensive agriculture and a large 
number of people and cattle (Abebe, 2018; Molla and Sisheber, 2017). Every year, erosion 
causes the highlands of Ethiopia to lose around 1.5 billion tons of topsoil (Tsegaye, 2019). 
According to a survey on the economic costs of soil erosion, Ethiopia loses USD 1 billion 
per year (Tsegaye, 2019). It resulted in the reduction of about 1.5 million tons of crop yield 
from the country’s annual harvest (Taddese, 2001). The Highlands region of Ethiopia 
accounts for 43% of the total land or 537,000 square kilometers (Hurni, 1988). Those 
Highlands regions encompass 95% of cultivated land (Shiferaw and Holden, 1999) and 
account for 90% of the Ethiopian economy. As a result, it is home to 90% of the population 
and 75% of livestock (Hawando, 1997). The Blue Nile basin, as part of Ethiopia's highlands, 
loses 131 million tons of soil per year (Tilahun, 2021). Intensive agricultural and other 
commercial activity has been accelerating soil erosion in the country if no significant policy 
implications are implemented to protect the land (Adugna, 2015). Estimates produced in the 
mid-1980s showed that out of a total area of 112 million hectares, 27 million hectares are 
significantly eroded, 14 million hectares are seriously degraded, and 2 million hectares have 
reached the irreversible stage (Amsalu and Graaff, 2006). Within the Upper Blue Nile Basin, 
which covers a total area of 176*103 km2, 24.4% is experiencing high to severe soil erosion, 
12.6% is moderately affected, and 63% is slightly affected by soil erosion (Mengistu et al., 
2012). 

To balance these ecological processes; human beings' care for soil and water resources is 
very important. Proper utilization, assessment, and management of the quantity of sediment 
load and water resources on spatial and temporal scales are mandatory. High sediment rates 
lead to the filling of reservoirs and loss of live storage, which eventually leads to loss of 
production potential (Kondolf et al., 2014). The design of effective conservation strategies 
may need a site-specific assessment of the most influential watershed processes (Addis et al., 
2016).  

In addressing issues of soil erosion and sedimentation, it is critical to identify affected 
areas and invest in spatial tools and modeling to manage resources efficiently and 
effectively. Site-specific assessments of the most influential watershed processes are crucial 
for the development of efficient conservation measures (Wang et al., 2016). In addition, a 
better understanding of the factors that determine sediment yield can facilitate and simplify 
appropriate mitigation.  

The soil erosion rate varies due to changes in climatic parameters for a variety of reasons; 
the most important is the change in the erosive power of rainfall (Tsitsagia et al., 2018). 
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According to the National Meteorological Agency (2007), climate change is likely to make 
soil erosion and sedimentation worse. The spatial and temporal variability of rainfall is the 
factor that leads to the increase and decrease of sediment yield (Tsitsagia et al., 2018). 
Sediment loading from stormwater runoff can be increased by more frequent and heavy rain 
events. Stronger storms, higher river levels, and faster stream velocity can exacerbate erosion 
and increase suspended sediment (turbidity) in water bodies, as well as disrupt the typical 
sediment distribution along the river, lake, and stream bottoms. The higher temperature 
might also lead to a higher evaporation rate, while the highest rainfall tends to a higher soil 
moisture rate that could finally lead to higher erosion (Nearing and Pruski, 2004). The Upper 
Blue Nile Basin and its major tributaries are subjected to significant environmental 
degradation (Ayele et al., 2016; Balabathina et al., 2020; Belay and Mengistu, 2021; Betrie 
et al., 2011; Daniel et al., 2014; Mengistu and Bewket, 2015; Leta et al., 2021; Meresa and 
Gatachew, 2019).  

Ethiopia is one of the countries that is most impacted by rising soil erosion, with a 
projected 23% increase in soil loss in 2050 (Moges et al., 2020). Thus, quantifying the impact 
of climate change on sediment yield helps to understand interconnected processes and 
justifies investment in long-term land management solutions that benefit land and water users 
(Wallace et al., 2017). Although a large number of research have been conducted to quantify 
soil erosion in Ethiopia in the current climate, there are very few studies that have projected 
soil erosion risk in light of the anticipated climate change (Orke and Li, 2022). Furthermore, 
even though there was no significant trend in the past, as reported by Woldemarim et al, 
(2023), there is little information currently available regarding the effects of future climate 
change on sediment in the Upper Blue Nile basins, particularly in the Andit Tid watershed. 
Modeling is important to project runoff and soil erosion under a dynamic nature to efficiently 
carry out this type of inquiry (Ahsan et al., 2021). Accurate sediment loss modeling is 
important for watershed management (Admas et al., 2022; Bayabil and Dile, 2020). 
Predictive models are useful tools for guiding and informing soil conservation planning and 
practice.  The aim of this study, therefore, was to estimate the watershed average annual net 
sediment yield, to look at the sediment spatial distribution, and to assess the effects of future 
climate conditions on sediment yield in the Andit Tid watershed. 

Materials and methods 

Description of the study area 

Andit Tid watershed is one of the seven research stations implemented by the Soil 
Conservation Research Project (SCRP). The watershed is approximately 477.6 hectares in 
size. It is 180 kilometers northeast of Ethiopia's capital, Addis Ababa, at 39°43' east and 9°48' 
north. The watershed drains westward into the Blue Nile basin, and the river Hulet Wenz 
drains eastward into the catchment (meaning two rivers in Amharic). The watershed is 
located on the eastern escarpment of the Rift Valley, which separates the Shewa Plateau from 
the Awash Plains. The topography varies from 3020 meters above sea level near the outlet 
in the northwest reach to 3500 meters above sea level in the southeast as illustrated in (Figure 
1). Andit Tid Research station is on the eastern edge of the Ethiopian highlands and was 
chosen as a typical example of highly degraded agricultural zones above 3000 m on the 
central highlands.  
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Figure 1 - The location map of the study watershed with the river lines inside. 

 
Gudibado and Wadyat rivers flow from the Northward to the Westward of the watershed, 

respectively. Their confluence is approximately 150 meters above the gauge station. While 
the Wadyat River is perennial, Gudibado flows only during the rainy seasons.  The watershed 
is primarily comprised of agricultural land, with the remainder being composed of forest, 
shrub, grass, and pasture land. 

Data sources and method of data collection 

Sources of soil map data 

This research clipped the raster file to the study watershed from a digital soil map 
developed by the Food and Agricultural Organization of the United Nations (FAO-UN). 
Therefore, the clipped soil map of the study watershed was used as an input for the model. 
The soil map with the resolution of 1km has been derived from Harmonized World Soil 
Database v1.2 a database that combines existing regional and national soil information and 
information provided by the FAO soil map (https://www.fao.org/soils-portal/data-
hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). This 
information included soil texture, hydraulic conductivity, available soil water content, bulk 
density, soil depth and soil drainage attributes.  

 
 

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Sources of Digital Elevation Model (DEM) 

The Digital Elevation Model (DEM) with 2m×2m resolution of the watershed was 
obtained from the Water and Land Resource Center (WLRC) office in Addis Ababa, 
Ethiopia. It was used to extract the stream networks, flow direction, flow accumulations, and 
generations. It also helped to define the watershed and its sub-catchments and to calculate 
topographic factors such as terrain slope. 

Sources of Land Use and Land Cover (LULC) map  

The land use of an area is one of the most important factors that affect surface erosion, 
runoff, and evapotranspiration in a watershed. For this study, the land use land cover map 
was digitized and classified using Google Earth imagery and Arc GIS 10.5. Supervised 
classification was done for the identification of land use and land cover types of the study 
watershed. 

Sources of daily climate data (1995 to 2021)  

The climate station at the outlet of the watershed, which was managed by the Debre 
Brihan Agriculture Research Centre and WLRC was used to get the precipitation and 
minimum (tmin) and maximum temperature (Tmax) data needed to run the Soil and Water 
Assessment Tool (SWAT) model. Four rain gauge sites distributed in the watershed and 3 
additional climatic stations (Mezezo, Debre Sina, and Gudoberet) outside of the watershed 
have been used for modeling. The data for the stations outside the watershed have been 
obtained from the Ethiopian National Meteorological Agency (ENMA). Since 1995 to 2021, 
input climatic data have been available in several data formats.  

Sources of Projected Climate Data 

Coordinated Regional Climate Downscaling Experiment (CORDEX) is experimentally 
downscaled specifically for climate impact studies in Ethiopia from Africa (Liersch et al., 
2018; Liersch et al., 2016). It was designed using multiple Regional Climate Models (RCMs) 
to provide rationalized, predictable variations in local climates and to evaluate any basis for 
uncertainty in the projection. RCMs are being used to examine climate projections at the 
local level (Laprise et al., 2013; Luhunga et al., 2016). According to a previous study by 
Dosio (2015), RCMs can simulate the most accurate estimates of yearly and seasonal rainfall 
and air temperature. They are particularly preferred for analyzing the distribution and 
frequency of extreme rainfall. It also provides climate datasets with a higher spatial 
resolution and is suited for impact research. The performance of CORDEX in simulating 
climate variables (rainfall and temperature) is good (Kefeni et al., 2020; Mutayoba and 
Kashaigili, 2017). 

Two representative concentration pathways (RCP) scenarios; the high emission 
scenario (RCP8.5) and mid-range mitigation emission (RCP4.5) are becoming the 
most widely used for hydrologic modeling (Vuuren et al., 2011). RCP4.5 suggests 
that economic structures are rapidly altering to reduce the material intensity and 
introduce clean energy, with a focus on a universal solution to economic, social, and 
environmental stability. By the year 2100, the radiative force could have stabilized 
at 4.5 W/m2, never exceeding it. On the other hand, RCP8.5 (Riahi et al., 2007), is a 
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worst-case scenario (the current trend) with rapid population growth, a slower pace 
of technological advancement, minimal effort to reduce emissions, and a large 
reliance on coal-fired power (Vuuren et al., 2011). Due to the strong reliance on fossil 
fuels, RCP8.5 radiative forcing could peak at 8.5 W/m2 by 2100. A detailed 
description of RCP can be found in (Vuuren et al., 2011). The projected precipitation 
and temperature data from 11 CORDEX (Table 1) between 2022 and 2098 under  
RCP 4.5 and RCP 8.5 were downloaded. 

 
Table 1 - List of climate models; their GCM name, RCM name and realization. 

Modeling Centre GCM name RCM  Ensemble 
Canadian Centre for Climate Modeling 
and Analysis, Canada CCCma-CanESM2 CRCM4 r1i1p1 
Canadian Centre for Climate Modeling 
and Analysis, Canada CCCma-CanESM2 RCA4 r1i1p1 
The Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 
Studies, and Japan Agency for Marine-
Earth Science and Technology, Japan MIROC-MIROC5 RCA4 r1i1p1 
Bjerknes Centre for Climate Research, 
Norwegian Meteorological Institute, 
Norway NCC-NorESM1-M RCA4 r1i1p1 
Max Planck Institute for Meteorology, 
Germany M-MPI-ESM-LR RCA4 r1i1p1 
Max Planck Institute for Meteorology, 
Germany 

MPI-M-MPI-ESM-
LR CFCM5 r1i1p1 

Centre National de Recherches 
Météorologiques, Centre Européen de 
Recherche et de Formation Avancée en 
Calcul Scientifique France 

CNRM-CERFACS-
CNRM-CM5 RCA4 r1i1p1 

Geophysical Fluid Dynamics 
Laboratory, USA 

NOAA-GFDL-
GFDL-ESM2M RCA4 r1i1p1 

Irish Centre for High-End Computing 
Ireland European Centre Earth global 
climate model system ICHEC-EC-EARTH HIRHAM5 r3i1p1 
Irish Centre for High-End Computing 
Ireland European Centre Earth global 
climate model system ICHEC-EC-EARTH RACMO22T r1i1p1 
Irish Centre for High-End Computing 
Ireland European Centre Earth global 
climate model system ICHEC-EC-EARTH RCA4 r1i1p1 
 

Sources of observed sediment data  

The staff gauge, automatic runoff stage recorder, and limnigraph are installed at the 
watershed outlet. Manual river stage recording is done every morning at 08:00. At whatever 
point there is peak runoff, one-liter grab samples for sediment measurement are taken every 
10 minutes starting before as long as the water turns brown. When the water level decreased 
and the runoff water returned to its original color, the sampling rate decreased to 30-minute 
interims and after that hour interims. Aside from sediment samples, the river water level is 
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manually measured to determine total runoff and the suspended material carried by the flow 
at that particular time interval. By oven-drying the one-liter grab samples and weighing the 
oven-dried soil, the quantity of sediment load within the sample could be estimated. The total 
soil loss is then calculated for that sampling interval by multiplying the total water flow per 
time by the sediment content measured from the one-liter sample. Seven years (2012-2018) 
of monthly sediment data from the gauge station in the Andit Tid watershed were used to 
calibrate and validate the SWAT model, including a two-year warmup period. 

Conceptual framework 

The workflow during the whole life of the research is presented in (Figure 2). 
 

 
Figure 2 - The procedural skeleton of the whole process of the study 

Methods of missing data filling  

Missing daily weather data was reproduced using the SWAT weather generator (Schuol, 
2007). Outliers from all types of data have been detected using statistical and graphical 
methods.  

Method of simulation of sediment yield  

Simulations of sediment yield were done using the SWAT. SWAT is one of the most 
widely used watershed modeling tools in the world, with applications in a wide range of 
water quantity and quality issues (Shrestha et al., 2016). SWAT takes into account factors 
such as weather, surface runoff, evapotranspiration, irrigation, sediment transportation, 
groundwater flow, crop growth, nutrient yielding, pesticide yielding, and water routing, as 
well as the long-term consequences of various agricultural management strategies (Arnold 
et al., 2011; NEITSCH et al., 2005).  

In the hydrological component, the total runoff for the watershed is calculated by routing 
the predicted runoff separately for each sub-basin of the total watershed area. Using a 
modified version of the universal soil loss equation (MUSLE), the sediment yield is 
calculated (eqs 6). The watershed is divided into sub-basins in the SWAT model, and these 
sub-basins are further divided into one or more homogeneous hydrological response units 
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(HRUs) with relatively unique combinations of land cover, soil and topographic conditions. 
The model could produce summary statistics per sub-basins or HRUs as an output. Therefore, 
it was possible to identify sediment hotspot regions or sub-basins using the output map. The 
water balance equation was used to estimate the total soil water content in the watershed (eqs 
1).  
𝑆𝑊! = 𝑆𝑊" + ∑ &𝑅 − 𝑄 − 𝐸𝑇 −𝑊#$$% − 𝑄&',(

)*+  ………………………….….(1) 
 
Where SW, is the final soil water content (mm), SW" is the initial soil water content (mm), 

t is time in days, R is precipitation (mm), Q is surface runoff (mm), ET is the 
evapotranspiration (mm), W-../ is percolation (mm), and Q01 is return flow (mm).  

In this study, the Hargreaves method (eqs 2) was used to determine potential 
evapotranspiration because rainfall and minimum and maximum temperatures were the only 
climate data available as recommended by (Hargreaves, 1985; Yates and Strzepe, 1994).  

 
ET2 = 0.0023 ∗ 0.408	 ∗ R3(T4.35 + 17.8)&	T436	 − T839:;,

".=…………………..(2) 
 
T4.35is the maximum air temperature (C), T839:; is the average air temperature (C), R3 

is extraterrestrial radiation (MJm-2), and 0.408 is a factor to convert MJ m-2 to mm. R3 is an 
estimate of extraterrestrial radiation based on the location's latitude and the calendar day of 
the year. 

SWAT employs two approaches based on the aforementioned assumption to estimate 
surface runoff; the Green and Ampt infiltration method and the Soil Conservation Service 
curve number (SCS) method (Zhang et al., 2019).  SCS is widely utilized due to its ability to 
employ daily input data. This study used the Soil Conservation Service curve number (SCS) 
method to assess surface flow. Mathematically, surface runoff has been estimated as (eqs 3): 

𝑄!"#$ =
%&!"#'(.*+

$

%&!"#,(.-.+
$…………..........................................................................(3) 

 
where: 𝑄!"#$ is the accumulated runoff or rainfall (mm), 𝑅/01 is the rainfall depth 

for the day (mm), and S is the retention parameter (mm) (eqs 4): 
 
𝑆 = 25.4 ∗ *2((

34
− 10.………………………………………………...………(4) 

 
SWAT uses a modified rational method to compute the peak runoff rate. The 

rational technique assumes that the intensity of precipitation begins at a time t=0 and 
continues indefinitely, with the rate of runoff increasing until t=𝑡5675, the time of 
concentration. The modified rational technique is stated mathematically as follows 
(eqs 5): 

 

𝑞890: =
%0;%∗=&'()∗>+
(@.A∗;%*+%)

……………………………………………………….…(5) 

 
where, qCDEF is the peak runoff rate (m3/s), atG is the fraction of daily precipitation 

that occurs during the time of concentration, QHIJK is the surface runoff (mm), A  is 
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the sub-basin area (km2), tGLMG is the time of concentration (hr), and 3.6 is the 
conversion factor. 

Finally, the SWAT model calculates surface sediment caused by rainfall and runoff within 
each HRU using the modified universal soil loss equation (Williams, 1975). 

  
𝑆𝑒𝑑 = 11.8	(Qsurf ∗ qpeak)".=> ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃…………………………….(6) 
 
Where: Sed represents the sediment yield per event (metric tons), K denotes the soil 

erodibility factor, LS denotes the topographic factor, C is the cover management factor, and 
P is the support practice factor. 

Data preparation for the SWAT model 

Climate data preparation 

The SWAT model was developed using meteorological data including rainfall data from 
seven stations and temperature data from four stations. The SWAT format was used to 
compile the available climatic data and their matching location table, which was then 
incorporated into the model using the weather data input wizard. swat-weatherdatabase-
v01803, a user-friendly program for archiving and processing daily weather data to be used 
with SWAT projects (Essenfelder, 2016). 

Soil data preparation 

The user soils were imported and added to the SWAT soil database to incorporate the soil 
parameters in the SWAT-2012 geodatabase. The dominant soils in the watershed were eutric 
Leptosols and lithic Leptosols, which cover 55.7 % and 37.6 %, respectively. Eutric 
Cambisols is another third soil type found in the easternmost part of the watershed, covering 
only 6.7 % of the watershed area. All the data were obtained from FAO soil databases and 
the water balance model for the eastern Nile basin (Hassan, 2012). 

Digital elevation model (DEM) preparation 

The DEM has been used to describe the topography and the geometry of the watershed 
(Figure 3). The spatial distribution of erosion is highly dependent on the topographic 
characteristics of an area. A steeper slope causes higher runoff velocities, more splashes 
downhill, and faster flow, and therefore contributes to greater soil erosion. The steep and 
rugged terrains are a defining feature of the Andit Tid watershed. More than half of the 
watershed has a slope of 20 % or steeper. The slope steepness increased significantly 
following the sides of the two rivers; Wadiat and Wani-Gedel. 
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Figure 3 - A hill shade DEM, hill shade slope, and slope class map of the study 

watershed: the steepest areas are colored in red, while the flattest parts are shaded in 
green. 

Land use and land cover (LULC) map preparation 

The analysis of land use and land cover (LULC) of the watershed was conducted using 
cloud-free Landsat 9 imagery. The image processing involved band composition and 
supervised classification techniques to categorize different types of land use. A maximum 
likelihood supervised classification was performed using ArcGIS 10.5, identifying six major 
LULC types within the watershed: agricultural land, forest land, open forest land, grassland, 
bushland, and open grasslands. 

The classification results indicated that agricultural land is the predominant land use type, 
covering approximately 60% of the total watershed area. This is followed by bushland, which 
accounts for 14.71% of the area. Open forest land is the least common land use type, 
constituting only 0.7% of the total watershed area. The detailed area coverage for each land 
use type is presented in Table 2. 
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Table 2 - The land use and land cover types and their respective proportional coverage of the 
watershed 

Landuse SWAT-code Area [ha] Percentage 
Agricultural Land AGRL 286.07 60 
Dense forest land FRSE 43.59 9.1 
Open forest FRST 3.48 0.7 
Bush land RNGE 70.23 14.7 
Grassland SPAS 22.66 4.74 
Open grassland PAST 51.59 10.8 
Total  477.6 100.0 

 
As a deterministic tool, SWAT has its method for preparing the input data. All land use 

types in the SWAT database are coded with four letters as part of the input parameter used 
in SWAT modeling. Each land use recognized in the study watershed has a four-letter code 
(Table 2), based on the SWAT database. 

Watershed and sub-basin delineation 

The model automatically delineated a watershed of 477.6 ha and 27 sub-basins. From the 
total of 27 sub-basins, sub-basins 22, 5, and 7 were the smallest, while sub-basins 24, 19, and 
20 were the largest sub-basins with the minimum flow accumulation threshold area of 2.5 ha 
(6250 grids, 4 m2 each). 

Hydrological Response Unit (HRU) definition 

The delineated watershed by Arc SWAT and the prepared land use overlapped 100%. 
The 6 classes land use map was reclassified into 6 classes to correspond with the land use in 
the SWAT interface based on the study (Setegn et al., 2008). The HRU analysis in Arc 
SWAT includes divisions of HRUs by slope classes in addition to land use and soil. The 
slope discretization (0-10, 10-20, 20-30, 30-40, >40) which accounts for the lower slope 
ranges is the best discretization option in considering the deposition of soil materials during 
sediment transportation (Setegn et al., 2008 and Ashagre, 2009). 

Model Sensitivity, Calibration, and Validation  

The Sequential Uncertainty Fitting (SUFI-2) algorithm associated with SWAT-CUP 2012 
has been used for a combined model sensitivity analysis, calibration, and validation 
procedures. The SUFI-2 algorithm considers both uncertainties of the conceptual model and 
uncertainties of the input data (Gupta and Beven, 2006). 

After the model was set up, the next step was to run the model. The results from the 
simulation cannot be directly used for further analysis but instead, the ability of the model to 
sufficiently predict the constituent sediment yield should be evaluated through sensitivity 
analysis, model calibration, and model validation (White and Chaubey, 2005). The 
sensitivity analysis aims to estimate the rate of change in the output of a model concerning 
changes in watersheds that result in a clear difference in hydrologic sensitivity (Reungsang 
et al., 2007). To better understand the behavior of the hydrological system, evaluate the 
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applicability of the model, and identify the parameters required to improve the simulation 
results, sensitivity analyses were carried out. Parameters for sensitivity analysis were 
selected by reviewing previously used calibration parameters and documentation from the 
SWAT manuals and other scholars (Feyereisen et al., 2007; Roth et al., 2016; NEITSCH et 
al., 2005; Saha et al., 2014; Smith et al., 2008; Yimer, 2015; White and Chaubey, 2005; 
Zhang et al., 2007) 

Model calibration is the modification of parameter values and comparison of the 
predicted output of interest to measured data until a defined objective function is 
achieved (Das et al., 2019; Khanal and Parajuli, 2014). Additional parameters, other 
than those identified during sensitivity analysis, are used primarily for calibration due 
to the hydrological processes naturally occurring in the watershed. Sediment yield 
calibration was done using and adjusting parameters that affect the sedimentation 
processes. Validation for sediment yield was done immediately after the model was 
successfully calibrated. Monthly average data from 2012-2015 and 2016-2018 of 
sediment yield have been used for calibration and validation, respectively. 

The 95 percent probability distributions produced at 2.5 percent and 97.5 percent 
of the cumulative distribution resulting from the propagation of parameter 
uncertainty, which is referred to as the 95 percent prediction uncertainty (95PPU), 
was used to express the uncertainty of the output variables (Abbaspour, 2015; 
Dakhlalla and Parajuli, 2019). 

The goodness of fit of the model 

Coefficient of determination (R2) (Krause et al., 2005), Nash-Sutcliffe efficiency (NSE) 
(Nash, 1970) percent bias (PBIAS) (Gupta and Sorooshian, 1999), Kling and Gupta 
Efficiency (KGE) (Gupta et al, 2009) and p-factor have been considered during the 
evaluation of the goodness of fit of the model.  

The NSE is a normalized statistic that assesses the relative magnitude of residual variance 
when compared to observed data (eqs 7) (Nash, 1970). It also showed how well the plot of 
observed versus simulated data follows the 1:1 line. NSE is the most common; emphasizes 
high flow; neglects the low flows and is a distance-based evaluation method (Krause et al., 
2005; McCuen et al., 2006). The model performance can be determined by the value of NSE, 
which can be 0.75<NSE≤1, 0.65<NSE≤0.75, 0.5<NSE≤0.65, 0.4<NSE≤0.5 and NSE≤0.4, 
with very good, good, satisfactory, acceptable, and unsatisfactory, respectively (Boskidis et 
al., 2012; Moriasi et al., 2007).   

 
𝑁𝑆𝐸 = 1 − ∑(A!BA")#

∑(A!Bǭ!)#
…………………………………….………………(7) 

 
Nash and Sutcliffe (1970), 𝑄 and ǭ are individual observation and mean values of the 

variable (sediment), respectively, 𝑚	𝑎𝑛𝑑	𝑠 are measured and simulated values of the 
variable. 

The R2 measures the proportion of variance in observed data and spans from 0 to 1, with 
higher values implying less error variance. The R2 value could indicate the model's 
performance as very good, good, satisfactory, and unsatisfactory with values of, 0.7< R2≤1, 
0.6< R2≤0.7, 0.5< R2≤0.6, and R2<0.5, (eqs 8) respectively (Moriasi et al., 2007). 
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𝑅E = ∑[(A!Bǭ!)(A"Bǭ")]#

∑(A!$Bǭ!)# ∑(A"Bǭ")#
…………………………………......…………..(8) 

 
where: 𝑄 and ǭ are individual observations and mean values of the variable (sediment), 

𝑚	𝑎𝑛𝑑	𝑠 are measured and simulated values of the variable. 
The average tendency of simulated data to be larger or smaller than their observed 

counterparts is measured by percent bias (PBIAS). It has an ideal value of 0, and low 
magnitude values indicate accurate model simulation. Positive values indicate 
underestimation bias in the model, whereas negative values suggest overestimation bias in 
the model (Gupta and Sorooshian, 1999). PBIAS is monotony and cannot be used as a 
decision-making criterion alone, but in collaboration with other criteria statistics, it might 
determine the model as very good, good, satisfactory, and unsatisfactory with the value 
PBIAS<±10, ±10< PBIAS < ±15, ±15 < PBIAS < ±25 and PBIAS > ±25 respectively 
(Legates et al., 1999).  Mathematically PBIAS can be calculated as (eqs 9): 

 

PBIAS = Y∑ (A$HBA$#)∗+""%
$&'

∑ A$H%
$&'

Z………………………………………………(9) 

 
KGE is reproduced by the Euclidian distance of the three variables derived from the 

NSE(eqs 10). The values of KGE range from -∞ to 1, and the optimal value is 1 (Gupta et 
al., 2009). 

 
𝐾𝐺𝐸 = 1 −\(𝛼 − 1)E + (𝛽 − 1)E + (𝑟 − 1)E…………………………..(10) 
 
Where; 𝛼 = J"

J(
 is the relative variability measured by the standard deviation values 𝜎#and 

𝑆) and 𝜎K of 𝑂); 𝛽 =
L"
L(

 is the ratio of the mean between the simulated and observed data and 

𝑟 is the linear correlation coefficient between 𝑆) and 𝑂). 
The p-factor, or percentage of data bracketed by the 95% prediction uncertainty (95PPU), 

indicates how well the uncertainty ranges cover the observed data. It’s a measure used in the 
SUFI-2 algorithm within SWAT-CUP to evaluate the quality of calibration (Dakhlalla and 
Parajuli, 2019; Mengistu et al., 2019; Yesuf et al., 2015). A higher p-factor means a higher 
percentage of observed data points are within the prediction uncertainty range. 

Climate Model Performance Evaluation 

Taylor diagrams were recently introduced graphical evaluation technique used to visually 
show which of the climate models is the most accurate. The Pearson correlation coefficient, 
the root means square error, and the standard deviation are used to measure the degree of 
agreement between the modeled and observed. Simulated patterns that closely resemble 
observations have been located closest to the x-axis point labeled “observed”. Taylor's 
diagram is used as a decision-making criterion for the confusing result of the statistical 
criteria (Taylor, 2001). This diagram provides a way of plotting three statistics on a 2-D 
graph that indicates how closely a pattern matches observations (Taylor, 2001).  This 
diagram is a newly introduced 2D tool designed to clarify confusing statistical results in 
climate model evaluation and is currently used by many scholars (Getaneh Ayele et al., 2024; 
Izzaddin et al., 2024; Sa’adi et al., 2017; Tegegne and Melesse, 2020; Xiong et al., 2021).  
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The model MPI (CRCM5), MPI (RCA4), and CNRM-CERFACS-CNRM-CM5 have 
about the same correlation (r=0.8) with the observed maximum temperature (Figure 4). 
NorESM1-M is the less accurate model; it has a low pattern correlation with the observed 
maximum temperature. 

 

 
Figure 4 - Pattern statistical comparison between the observed maximum temperature 

and the eleven climate models. 

The observed minimum temperature was strongly correlated (r>0.9) with all of the 
climatic models. CCCma-RCA4 has a relatively lower standard deviation, which is to the x-
axis point labeled "observed," as seen in (Figure 5). Yet, this assessment proved that the 
climate models are appropriate for predicting the study area's future minimum temperature. 

 

 
Figure 5 - Pattern statistical comparison between the observed minimum temperature 

and the eleven climate models. 
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The ICHEC-HIRHAM and MPI-CRCM5 climate models were shown to be better than 
the others in terms of rainfall projection. They are more correlated (r ≈0.8) with the actual 
rainfall. The only model that has the lowest correlation (r<0.5) with observed and is furthest 
from the x-axis labeled "observed" is NORESM1-M (Figure 6). The remaining climate 
models have all correlated satisfactorily with the actual rainfall. 

 

 
Figure 6 -Pattern statistical comparison between the observed rainfall and the eleven 

climate models. 

From the evaluation, all climate models were found to be suitable to project the future 
climate condition of the study area other than NorESM1-M. Therefore, this study used two 
climate models having the highest and the lowest annual rainfall to look at the future 
sediment yield in both dry and wet scenarios. The regional climate model MPI (RCA4) and 
CCCma (CRCM4) were found to be the driest and the wettest climate models, respectively. 
The observed data and these climate models show a strong correlation (Figure 4-6). 

Bias correction for climate data 

After the selection of the best models for the study area, the climate model data for 
hydrological modeling (Cmhyd) have been used to do bias correction (Rathjens et al., 2016 
and Bieger et al., 2017). CMhyd is a Python tool designed to integrate global and regional 
climate model data into hydrological models. It performs temporal and spatial bias correction 
on climate model data, ensuring it accurately reflects the observation gauges used in 
hydrological model inputs (Zhang et al., 2018; Rathjens et al., 2016). The future periods of 
2022 to 2098 were simulated against the 1991 to 2010 baseline period. Local intensity scaling 
(LOCI) was used in precipitation bias correction and distribution mapping (DM) (Zhang et 
al., 2018) was used for the bias correction of the temperature. 

Projected rainfall and temperature trend analysis 

The Mann-Kendall (MK) trend test was used to detect long-term future trends in rainfall 
and temperature derived from both the driest and wettest climate models. This time series 
trend analysis was conducted using the trial version of XLSTAT software. The MK test, a 
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rank-based method, is particularly suited for trend analysis of time series data, helping to 
identify whether there is a statistically significant trend over time(Burn et al., 2004 and 
Tesemma et al., 2010). The normalized test statistics Z for the MK test are computed using 
Eqs. (11)-(14) below (Yu et al., 1993). 

 

S =b b sgn(xM − x9

5

M*9N+

5B+

9*+
)…………………………… . . (11) 

       Where;               sgn&xM − x9, = g
+1	if&xM − x9, > 0
0	if	&xM − x9, = 0
−1	if	&xM − x9, < 0

k…………………………(12) 

 
sgn is the signum function and xi and xj are the annual values in the years i and j, i > j, 

respectively,  
The application of the trend test is done to a time series Xi that is ranked from i = 1, 2…n-

1 and Xj, which is ranked from j = i + 1, 2…. n. Each of the data points Xi is taken as a 
reference point which is compared with the rest of the data point's Xj so that: 

If S>0, then later observations in the time series tend to be larger than those that appear 
earlier in the time series and it is an indicator of an increasing trend, while the reverse is true 
if S<0 and this indicates a decreasing trend. 

Under the null hypothesis of no trend, the statistic S follows an approximately normal 
distribution with mean zero and variance (Kendall, 1975) statistic is given as: 

 

var(S) =
n(n − 1)(2n + 5) − ∑ t+(t+ − 1)(2t+ + 5)4

,*+

18
………… . . (13) 

 
Where: n is the number of observations and ti are the ties of the sample time series. And 

m is the number of tied groups.  
When the sample size n ≥ 10, as used in this study, the test statistic Z is calculated as 

(Kendall, 1975). 
 

Z =

⎩
⎪
⎨

⎪
⎧
S − 1
σ

	if	S > 0

0	if	S = 0
S + 1
σ

	if	S < 0⎭
⎪
⎬

⎪
⎫

………………………………… . . (14) 

 
Where:  Z follows a normal distribution, a positive Z and a negative Z depict an upward 

and downwards trend for the period respectively.  

Sediment yield modeling with future climate scenarios 

SWAT was run with bias-corrected projected climate data from the two models for the 
near future and the far future. The impact of climate conditions with both RCP 4.5 and RCP 
8.5 on sediment yield was then determined by comparing the current with projected outputs. 
In all scenarios, the spatial distribution and hot spot area mapping were done using Arc GIS 
10.5. 



Journal of Agriculture and Environment for International Development - JAEID 2024, 118(2): 83 – 118  
DOI: 10.36253/jaeid-16073 

 

99 
 

 

Results 

Sensitive parameters during sediment simulation 

Sensitivity analysis was done using eleven parameters (Table 3). The analysis indicated 
SOL_AWC(..).sol, SOL_K(..).sol, SPCON.bsn, and USLE_P were the most sensitive 
parameters for simulating sediment yield.   

 
Table 3 - Parameter sensitivity, method of a parameter change, initial intervals and fitted values 

Parameter Name          Descriptions 
Min- 
value 

Max- 
value 

Fitted 
Value t-Stat P-Value 

R__SOL_AWC(..).sol   

Available water 
capacity of the soil 
layer. -0.25 0.25 0.0441 0.406 0.000 

R__SOL_K(..).sol     
Saturated hydraulic 
conductivity. -0.15 0.25 0.17 0.285 0.000 

V__SPCON.bsn          

Linear parameter 
for calculating the 
maximum amount 
of sediment that can 
be reentrained 
during channel 
sediment routing. 0.0001 0.01 0.007 -2.361 0.024 

V__USLE_P.mgt 
USLE equation 
support practices 0.16 0.91 0.279 0.601 0.327 

A__EPCO.hru           

Plant uptake 
compensation 
factor. 0 1 0.616 0.960 0.344 

R__USLE_K(..).sol           
USLE soil 
erodibility  0.27 0.78 0.510 -0.649 0.521 

A__GW_REVAP.gw       
Groundwater 
"revap" coefficient. 0.02 0.2 0.122 0.548 0.587 

V__CH_N2.rte         

Manning's "n" value 
for the main 
channel. 0 0.2 0.072 0.454 0.653 

A__GW_DELAY.gw       
Groundwater delay 
(days). 0 500 191.8 -0.453 0.654 

A__ESCO.hru           
Soil evaporation 
compensation factor 0 1 0.914 0.416 0.680 

V__SPEXP.bsn         

Exponent parameter 
for calculating 
sediment 
reentrained in 
channel sediment 
routing. 1.0 1.5 1.189 0.338 0.738 

V_means the existing parameter value is to be replaced by the given value 
A_means that the given value is added to the existing parameter value 
R_means that the value of the existing parameter is multiplied by (1+ a given value) 
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The model performed well to simulate the sediment yield in the Andit Tid watershed. The 
P factor was calculated to evaluate the uncertainty of the model. They implied that 71% and 
72% of the observed sediment were enveloped by the 95PPU during the calibration (2012-
2015) and validation period (2016-2018), respectively as illustrated in Figure 7. 

  

 
Figure 7 - Comparison of the measured and predicted monthly sediment yield during 

the calibration (2012-2015) and validation (2016-2018) period.  

The R2 was 0.64 and 0.72 and PBIAS was determined to be 34.5 and 33.5 during 
calibration and validation, respectively. Additionally, KGE was determined to be 0.4 and 
0.34 during calibration and validation, respectively. The model is generally good at 
simulating the sediment yield of the Andit Tid watershed (Table 4). 

 
Table 4. Summary statistics for calibration and validation of sediment yield in the outlet of the Andit 
Tid watershed 

Variable Tests 
Objective functions 

R2 PBIAS NSE p-factor KGE 

Sediment yield 
Calibration 0.64 34.5 0.5 0.71 0.4 

Validation 0.72 33.8 0.52 0.72 0.34 

 

Simulated and observed sediment yield 

The correlation between the predicted and observed sediment yield was found statistically 
significant with a correlation coefficient of (r = 0.82) at (p<0.01) level of significance. As 
shown in (Figure 8), the one-unit change in observed sediment will have a 0.44-unit change 
in the predicted sediment yield.   
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Figure 8 - The 1:1 scatter chart between simulated and observed sediment yield with a 
correlation value 

Estimation and hotspot area mapping of sediment with current climate condition 

The total annual sediment loss of the watershed is estimated at 8543.52 tons, with a 
significant variation in erosion vulnerability across the sub-basins. The study highlights that 
17 out of the 27 sub-basins exceed the tolerable soil loss levels for Ethiopia's highlands, 
which range from 2 to 18 t ha⁻¹ yr⁻¹, according to Hurni (1993). This finding underscores the 
urgency of targeted soil conservation interventions in these areas. 

Sub-basin 8 stands out as the most vulnerable, with an alarming sediment loss rate of 43.5 
t ha⁻¹ annually, far exceeding the upper limit of the tolerable range. This high rate of 
sedimentation suggests severe land degradation, likely due to factors such as steep slopes, 
deforestation, overgrazing, and inadequate soil conservation practices. On the other hand, 
sub-basin 25, with an annual sediment loss of only 0.28 t ha⁻¹, is the least affected. This 
disparity between sub-basins 8 and 25 highlights the heterogeneity within the watershed, 
pointing to the need for localized soil conservation strategies. 

The average annual sediment loss for the watershed is 17.9 t ha⁻¹. This average, however, 
masks the extreme variations within the watershed, as evidenced by the wide range of 
sediment loss values. The visual illustration (Figure 9) supports this by color-coding the sub-
basins based on their vulnerability, with green indicating the safest areas and red/orange 
indicating the most vulnerable. The spatial distribution of sediment loss vulnerability 
indicates that sub-basins in the Northeastern, Eastern, and Western regions are particularly 
prone to erosion. Specifically, sub-basins 7, 8, 10, 14, and 18 in the northern to eastern 
section, and sub-basins 18, 23, and 24 in the central and western parts, are identified as high-
risk areas. These regions likely experience higher erosion due to a combination of natural 
and anthropogenic factors, including topography, soil type, land use practices, and climatic 
conditions. Conversely, sub-basins located in the center of the watershed, such as 15, 13, 20, 
9, 11, 12, and 16, along with sub-basin 25 in the southeastern part, exhibit lower sediment 
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loss rates. These areas may benefit from more effective soil conservation practices, flatter 
terrain, better vegetation cover, or less intensive land use. 

The findings underscore the need for targeted soil and water conservation 
measures in the most vulnerable sub-basins. Interventions could include 
reforestation, terracing, the establishment of grass strips, and the adoption of 
sustainable agricultural practices. Given the high variability in erosion rates, 
conservation efforts should be tailored to the specific conditions of each sub-basin to 
be most effective. Continuous monitoring and adaptive management are essential to 
address the dynamic nature of soil erosion and sediment loss in the watershed. 

 
Figure 9 - Estimated sediment yield per sub-basins of Andit Tid watershed (the red and 

yellow shaded are identified to be highly affected while the green shaded are less affected 
sub-basins). 

Projected temperature and rainfall 

In 2098, the average yearly rainfall of the Anit Tid watershed will be 1451.7 mm, with a 
range from 468.3 mm to 3812.1 mm in RCP 4.5 and 1561.5 mm, with a range from 563.2 
mm to 4541.1 mm in RCP 8.5, respectively. The average rainfall in the near future (2022-
2060) would be 1572.05 mm and 1352.4 mm in RCP 4.5 and RCP 8.5, respectively. The 
annual rainfall could then drop by 247.78 mm to 1328.27 mm in RCP 4.5 and rise by 432.63 
mm to 1776.03 mm in RCP 8.5 in the far future (2061-2098). Therefore, as RCP 4.5 projects, 
the annual rainfall in the mid-century will be greater than the annual rainfall in the late 
century, while as RCP 8.5 projects the rainfall will continuously be increased up to 2098.  
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In regards to temperature, the study watershed's projected temperature under RCP 4.5 and 
RCP 8.5 will be 19.3°C and 20.5°C, respectively. The temperature of the study watershed 
showed an increase over time in both RCPs, as presented in Figure 10. RCP 4.5 and RCP 8.5 
project that in the near-future (2022–2060), the average temperature may be 19°C and 
19.6°C, respectively. In the long periods of time (2061–1998), it is projected that the 
temperature will increase by 0.7°C and 1.8°C, respectively, for RCP 4.5 and RCP 8.5.  

Trends of projected temperature and rainfall  

The trend analysis of the projected temperature and rainfall from both the wettest and 
driest climate models is illustrated in Figure 10. The figure evidences an increasing trend for 
all temperature measurements across climatic models and RCPs. Conversely, the graph for 
rainfall exhibits an undefined trend in both climate models and RCPs. Therefore, it was 
crucial to perform a Mann-Kendall trend analysis (Table 5) to accurately determine whether 
there were any significant increasing or decreasing trends in the projected rainfall and 
temperature for the study watershed.  
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Figure 10 - The chart shows the time series trends of projected rainfall and temperature 
of the wettest and driest RCMs with RCP 4.5 and RCP 8.5.  

The Mann-Kendall trend test results for the projected rainfall and temperature of the driest 
and wettest climate models are presented in Table 5. From Table 5, it can be confirmed that 
in both the wettest and driest climate models, the temperature is significantly increasing. In 
contrast, rainfall is decreasing in the driest climate model across both RCPs, though this 
decrease is not statistically significant. Rainfall is significantly increasing in the wettest 
climate model under RCP 8.5, while in the wettest climate model under other RCPs, there is 
a non-significant increase. 

The Sen's slope (S value) is positive for all temperature results, indicating an increasing 
trend. Conversely, a negative S value for rainfall suggests a decreasing trend. However, the 
magnitude and significance of these trends vary between the climate models and RCPs.  
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Table 5 - The Mann-Kendall trend test result for the projected rainfall and temperature with the driest 
and wettest climate models and RCPs. 

  

Temperature  Rainfall 
Driest RCMs Wettest RCMs Driest RCMs Wettest RCMs 

 RCP 8.5 RCP 4.5  RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 
Kendall's tau 0.82 0.44 0.85 0.6 -0.08 -0.08 0.16 0.02 
S 2408 1296 2482 1750 -230 -234 460 44 
p-value  0 0 0 0 0.31 0.31 0.04 0.85 
Significance  ** ** ** ** ns ns * ns 

** indicates highly significant, * indicates significant and ns means non-significant trend 

Estimation of sediment yield with the wettest climate scenario   

Temporal analysis 

The temporal distribution of sediment yield of the watershed in both RCPs is presented 
in (Figure 11).  

In RCP 4.5, the sediment yields for the study watershed ranged from 0.2 t ha-1 yr-1 to 71.5 
t ha-1 yr-1 with the average of 13.7 t ha-1. Six years were determined to be the most problematic 
years, with an average yearly sediment of more than 30 t ha-1. The average sediment yield of 
the watershed in the near future (2022-2060) was 16 t ha-1 yr-1, which was found to be higher 
than the far future average of 11.6 t ha-1 yr-1.  

In RCP 8.5, the simulated average sediment from the watershed was ranged from 0.2 t ha-

1 and 82.3 t ha-1 with the average of 16.1 t ha-1 yr-1. The near (2022-2060) and far (2061-
2098) future annual sediment loss of the watershed was projected to be 10.5 t ha-1 yr-1 and 
21.6 t ha-1 yr-1, respectively.  This demonstrated that the average sediment yield in the far 
future will increase by 20.4% relative to the baseline average sediment. The far future 
sediment loss in the watershed showed an increase of 11.1 t ha-1 yr-1 over the preceding 
estimate near future average sediment loss. This demonstrated that, in comparison to the 
average sediment yield of the near future, the sediment yield will double toward the end of 
the century. 

It was discovered that, in comparison to the baseline sediment, the near future (2022–
2060) sediment was equal to it in RCP 4.5 and decreased by 41% in RCP 8.5, whereas the 
far future (2061–2098) sediment grew by 20.4% in RCP 8.5 and decreased by 35% in RCP 
4.5.  Out of the projected 76 years, 21 and 23 years shown positive deviations from the mean 
of the existing sediment yield under RCP 4.5 and 8.5, respectively. The graph below (Figure 
11) makes it quite evident that the trend of sediment yield in RCP 4.5 is declining while it is 
rising in RCP 8.5. In this climatic scenario, 42 (in RCP 4.5) and 44 (in RCP 8.5) years out of 
the projected 76 years were found to be susceptible to sediment loss. The annual sediment 
yield of the watershed is determined to be over the threshold level (10 t ha-1) of the country's 
highland region, although the proportionate change of most of the years in both RCPs was 
negative. This can be attributed to the watershed's high susceptibility to sediment yield since 
the baseline.  
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Figure 11 - Temporal variability of sediment yields as simulated using the wettest 

climate model 

Spatial analysis  

The spatial variability of sediment yield in both RCPs is illustrated in (Figure 12). The 
near future annual sediment yield ranged from 0.33 to 46.7 t ha-1. Similarly, the far future 
sediment ranged from 0.22 to 32.51 t ha-1. Sub-basins 20, 25, and 13 were the watershed's 
safest sub-basins losing less than one t ha-1 yr-1, while sub-basins 24 and 14 are the most 
susceptible, losing an average of more than 30 t ha-1 yr-1. However, most of the sub-basins 
(18 sub-basins and 17 sub-basins in the near and far future, respectively) were found to be 
vulnerable to sediment loss above the tolerable soil loss limit proposed for the Ethiopia 
highlands. Generally, northern, eastern, and southwestern regions of the watershed were 
identified to be vulnerable to sediment loss.  

In RCP 8.5, sub-basins 14 and 25 experienced the highest and lowest sediment loss, 
respectively. Furthermore, it was found that sediment loss might occur in both time frames 
in sub-basins that were found to be vulnerable in RCP 4.5 and that were situated in the 
watershed's northern, eastern, and western areas. In contrast, sub-basins in the Northwestern 
and Southern areas lost only a little quantity of sediment and were considered safe basins 
(Figure 12).  
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Figure 12 - The spatial distribution of the projected sediment yield (t ha-1yr-1) from the 
wettest climate model (CCCma (CRCM4) and SWAT for the years (a) 2022-2060 and (b) 

2061-2098. 

Estimation of sediment yield with the driest climate model  

Temporal analysis 

The average sediment yield of the watershed in both RCPs of this driest climate scenario 
is presented in (Figure 13). 

In RCP 4.5, the sediment yield of the watershed is estimated to be 4.7 t ha-1 yr-1. Sediment 
yields for the study watershed varied through time, ranging from 0.04 t ha-1 yr-1 to 16.1 t ha-

1 yr-1 in 2065 and 2025, respectively. Five years were determined with an average annual 
sediment yield of more than the tolerable soil loss limit for Ethiopia highlands (10 t ha-1). 
These years were 2042, 2046, 2065, 2076, and 2077 and the annual sediment loss for each 
was 16.1, 10.4, 10.8, 14.4, and 10.04 t ha-1 yr-1, respectively. The average sediment yield of 
the watershed in the near future was projected to be 6.6 t ha-1 yr-1, which is almost twice the 
average sediment yield in the far future (3.5 t ha-1 yr-1).  

The projected average sediment yield in RCP 8.5 of the watersheds is estimated to be 4.06 
t ha-1 yr1. The sediment yield of the study watershed varied through time, ranging from 0.275 
t ha-1 yr-1 to 11.8 t ha-1 yr-1 in 2033 and 2098, respectively. Six years were identified with an 
average yearly sediment loss of more than 10 t ha-1. These years were 2024, 2030, 2032, 
2057, 2059, and 2098 and the annual sediment loss for each was 10.3, 11.4, 10.89, 11.79, 
11.11, and 11.8 t ha-1 yr-1, respectively. The average sediment yield of the watershed in the 
near future is projected to be 4.16 t ha-1 yr-1, which was higher than the average of the far 
future (3.97 t ha-1 yr-1). The temporal distribution of sediment yield under this RCP is 
comparable with RCP 4.5. 

In this driest climatic scenario, the sediment production was generally lower than in the 
baseline. Conversely, comparable trends to the wettest climate model were discovered; the 
tendency indicates that sediment yield will decrease in RCP 4.5 and increase in RCP 8.5 
when it goes towards the end of this century, as shown in the graph below (Figure 13).     
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Figure 13 - Temporal distributions of sediment yield as simulated from the driest 

climate model (MPI (RCA4))  

 

Spatial analysis 

The spatial distribution of sediment yield in both RCPs is presented in (Figure 14).  
In RCP 4.5, sub-basins 14 and 25 experienced the highest and lowest sediment yield, 

respectively. The range of sediment yield was from 0.11 t ha-1 yr-1 to 13.6 t ha-1 yr-1 in the 
near future and from 0.08 to 12.8 t ha-1 yr-1 in the far future. This showed that there was not 
a major change in the sediment yield of the watershed with time. Additionally, it was 
determined that sub-basins found in the Northern, Eastern, and Western regions of the 
watershed were susceptible to sediment loss in both time frames. While sub-basins found in 
Northwestern and Southern regions were deemed to be safe basins; they contributed a modest 
amount of sediment.  

In RCP 8.5, the sediment yield results demonstrated that the watershed's southwestern, 
northern, and eastern regions are more prone to erosion than its northwestern and central 
regions. Sub-basins found in the eastern part of the watershed are suffering from the highest 
sediment loss, and in the reverse: sub-basins with comparatively high runoff in the central 
part of the watershed are less vulnerable to sediment loss. This showed that even when the 
watershed has high runoff, the runoff does not always contain sediment and that the area of 
the watershed where little runoff occurs does not always have pure water.  
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Figure 14 - The spatial distribution of projected sediment yield (t ha-1yr-1) from the 

driest climatic model MPI (RCA4) (RCP 4.5) and SWAT for the years (a) 2022-2060, and 
(b) 2061-2098. 

 Discussion 

The capability of SWAT to simulate sediment 

The finding of this study confirmed that SWAT could simulate the sediment yield of the 
study watershed. The simulation result was evaluated using objective functions and the 
model was found to be reliable and accurate.  Similarly, the SWAT model can predict 
sediment yields in Fincha Watershed, Ethiopia with R2 = 0.82 and ENS = 0.80 during the 
calibration period and R2 = 0.80 and ENS = 0.78 during the validation period (Ayana et al., 
2012).  The SWAT model reasonably simulated the sediment yield with R2 of 0.78 and R² of 
0.84 (Getinet, 2021), R2 of  0.85 and R2 of 0.77 (Gebremariam, 2019) for calibration and 
validation, respectively. Studies in similar watersheds reported, simulated and observed 
sediment yield was found to be significantly correlated (Gebrie, 2018; Lebay, 2022 and 
Ashagre, 2009).  

Estimation of sediment yield with SWAT 

The study described that the watershed was losing sediment greater than the proposed soil 
loss limit of the Ethiopian highland. The tolerable soil loss that can maintain the economy 
and a high level of production ranges from 5 to 11 t ha-1 yr-1 (Husen and Abate, 2020; 
Libourel, 2014; Renard et al., 1997), while the average sediment yield of the study watershed 
was 17.9 t ha-1 yr-1. The spatial distributions of the sediment yield showed that 17 sub-basins 
have high sediment yields among the 27 sub-basins generated by the SWAT model. Each 
sub-basin has a different sediment yield due to the land use system, slope, and other 
influencing factors. The majority of these vulnerable sub-basins are found in the 
northeastern, western, and eastern parts of the watershed on agricultural land that has active 
gullies and a slope class of 20% to 30%. While sub-basins located in the central regions of 
the watershed were terraced and were less vulnerable to sediment loss.  

According to the climatic and biophysical characteristics of their study area, other studies 
of similar nature carried out in numerous regions of Ethiopia and elsewhere in the world 
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found varying results for sediment yield. Similar research in the Upper Blue Nile Basin 
calibrated for the years 1992 to 2020 estimated that the watershed's mean annual sediment 
yield was 17.9 t ha-1 yr-1 (Abebe et al., 2022). Another study conducted in Anjeni also found 
yearly average sediment yields of 27.8 t ha-1 (Setegn et al., 2010). A comparable study carried 
out in the Gumara Maksegnit watershed found an average yearly sediment yield of 21.08 
Mg/hm2, which is far higher than the potential rate of soil regeneration (Addis et al., 2016). 
In another study conducted using the SWAT model in the Kesem Dam, A wash basin 
reported the mean annual sediment yield of the watershed was 11.43 t ha-1 yr-1 (Abebe and 
Tolessa, 2020). The study carried out in the Xinjiang River Basin reported that the annual 
sediment yield rate ranged from 3 t ha-1 yr-1 in riparian lowlands to 33 t ha-1 yr-1 in the 
mountain highlands, with a mean of 19 t ha-1 yr-1 in the basin (Yuan and Forshay, 2020b). In 
contrast, the study reported the total annual average sediment yield for the entire Blue Nile 
Basin is 4.26 t ha-1 yr-1 (Fetene et al., 2008).   

Sediment yield with future climatic scenarios 

The analysis of both the driest and wettest climate scenarios reveals a definitive rise in 
temperature alongside an unclear trend in rainfall patterns. This temperature increase, 
irrespective of the precipitation trends, has significant implications for sediment yield in the 
studied watershed. Under the driest climatic models, there is a notable reduction in sediment 
yield compared to the current rate, which suggests that lower moisture availability might 
limit soil erosion processes. However, it is important to highlight that despite this overall 
reduction, five out of the 76 years of the projection period exhibited sediment loss exceeding 
the tolerable soil loss limit characteristic of the Ethiopian highlands. 

In a more detailed analysis of the sediment loss projections under both RCPs, the study 
identified that out of the 76 projected years, 42 years under RCP 4.5 and 44 years under RCP 
8.5 experienced sediment loss above the tolerable limit. This indicates that while the overall 
trend might suggest a decrease in sediment yield under the driest scenarios, the frequency of 
extreme soil loss events remains significant and even more prevalent under higher emission 
scenarios (RCP 8.5). 

Supporting evidence from other studies reinforces these findings. For instance, Girmay et 
al. (2021) found that the soil loss rate is anticipated to increase under both RCP 4.5 and RCP 
8.5 scenarios. This suggests that the expected rise in temperature and potential changes in 
rainfall intensity will enhance the erosive power of rainfall, leading to greater soil loss. 
Additionally,  Belay and Mengistu (2021) indicated that the middle of this century could 
witness an increase in soil erosion rates compared to the baseline period due to the greater 
erosive potential of rainfall driven by climate change. 

These findings underscore the complex interplay between climate change variables and 
soil erosion processes. While reduced moisture availability in drier scenarios might limit 
sediment yield on average, the increased temperature and potential for more intense rainfall 
events could offset these benefits, leading to significant soil erosion in specific years. The 
higher frequency of extreme erosion events under RCP 4.5 and RCP 8.5 highlights the need 
for targeted soil conservation strategies to mitigate the adverse impacts of climate change on 
soil erosion. This nuanced understanding of sediment yield dynamics is crucial for 
developing effective climate adaptation and mitigation plans. Gadissa et al. (2018) reported 
that the rate of sedimentation in Lake Ziway will drop by 38% under RCP4.5 and by 23% 
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under RCP8.5. This reduction is attributed to the anticipated decrease in rainfall and increase 
in temperature, which might reduce runoff and, consequently, sediment transport to the lake.  

The other finding stated, that in comparison to the baseline period, climate change is 
predicted to increase average annual sediment yield by 4% to 32%   (Zhang et al., 2019). 
This significant range underscores the variability and uncertainty inherent in climate 
projections and their impact on sediment dynamics. By the 2030s and 2060s, the climatic 
variable increments were predicted to cause intensifications in the mean annual sediment 
yield of 4.42% and 8.08% for RCP 4.5 and 7.19% and 10.79% for RCP 8.5 (Jilo et al., 2019). 
These figures suggest a clear trend of increasing sediment yield over time, with more 
pronounced effects under higher emission scenarios. 

Furthermore, projections for mean annual stream flow also indicate substantial increases 
due to climate variables. For 2020, 2050, and 2080s, the increases in climate variables are 
predicted to increase mean annual stream flow by 8%, 13%, and 15% for the RCP2.6 
scenario, 17%, 24%, and 31% for the RCP4.5 scenario, and 14%, 24%, and 35% for the 
RCP8.5 scenario; this, in turn, increases sediment yield (Mohammed, 2020). These findings 
illustrate how changes in precipitation and temperature patterns will likely exacerbate 
erosion processes, leading to higher sediment yields.  Similar findings reported that climate 
change could increase sediment yield by up to 10% per year if not controlled (Theron et al., 
2021). This highlights the urgency of implementing effective soil conservation measures to 
mitigate the adverse effects of increased erosion and sedimentation. 

The projected increases in sediment yield under various RCP scenarios indicate a 
significant potential for enhanced soil erosion, driven by changes in rainfall intensity and 
increased temperatures. However, specific cases like Lake Ziway highlight the complex 
interplay between climatic factors and local geography, suggesting that the impacts of 
climate change on sediment dynamics can vary widely.  

Conclusion and Recommendations 

This research provides valuable insights into the spatiotemporal distribution of sediment 
yield in the Andit Tid watershed under current and projected climatic scenarios. Using 
SWAT and Arc GIS 10.5, the study estimated an annual average sediment yield of 17.9 t ha-

1 yr-1, with calibration and validation R2 values of 0.62 and 0.72, respectively. Future 
projections indicate variability in sediment yield depending on the climatic scenario, with 
significant differences observed between RCP 4.5 and RCP 8.5 pathways. Notably, the 
watershed's northeastern, eastern, and western regions, primarily steeply sloped farmland 
with active gullies, were identified as major contributors to sediment yield.   

It is advised that targeted management techniques be implemented using the 
spatiotemporal distribution maps generated by this study. Provide priority to interventions in 
areas designated as hotspots for sediment yield, particularly in the eastern, western, and 
northeastern regions which are marked by active gullies and steep slopes. Adaptation 
strategies that consider the predicted changes in sediment yields under varied climatic 
scenarios; in particular, there should be a focus on emission mitigation to prevent the higher 
sediment yields predicted under RCP 8.5. 
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