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Abstract: The modernization of agriculture has transformed natural agrarian systems into 
other new conventional ones, making it possible to exponentially increase agricultural 
production. This leads to the destruction of ecological functions, and services, and has 
negative impacts on human health. This critical situation has given rise to a new model 
of agriculture called agroecology, which has emerged as a systemic approach that can 
understand the practices of traditional agricultural systems, as a scientific discipline that 
defines, classifies, and studies agrosystems from an ecological and socio-economic point 
of view.  This paper explores the major problems of agriculture, including climate change, 
monoculture, and chemical fertilization at the local, regional and global scale. Equally, 
we defined the different concepts that bring together the agroecological approach.  We 
based on agroecology as a scientific discipline, as a practice by defining the different 
agroecological practices and their scale of application, as well as the politico-economic 
aspect of this concept. Further, we have proposed the agroecological alternatives that can 
remedy the three problems recorded in the first section, based on several recent studies 
and research that can examine whether agroecological practices have positive results on 
monoculture, chemical fertilization, and climate changes. However, more advanced 
studies, using rigorous research design, such as case controls, longitudinal studies, and 
surveys in regions where agriculture is their main source of income, such as Morocco, are 
still needed. These investigations are suggested to fill the gap of data on such areas and 
fields of research. 

Keywords: Agriculture, agroecology, agroecosystem, chemical fertilization, climate 
change, monoculture. 

Introduction 

The revolution of the agricultural sector dated from 1950 to 1980 and created an intensive 
agriculture, called green revolution that was based on increasing fieldwork and yields, which 
were mainly based on aggressive mechanization and intensive use of chemical inputs, 
namely fertilizers and pesticides (Fathallah, 2010; Griffin, 1979; Gupta, 1998; Harwood, 
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2019; Kumar, 2016; Prashar & Shah, 2016; Shattuck, 2021). This has led to a depletion of 
fossil resources causing impacts on the entire compartment of the environment. Fertilizers 
lead to the pollution of groundwater and eutrophication of surface waters by chemical 
substances, such as nitrates and phosphates (Bijay-Singh & Craswell, 2021; El Mountassir 
et al., 2022; Khan et al., 2018; L. Liu et al., 2021). Pesticides affect the fauna diversity and 
the accumulation of pesticide residues at the plant level and reduction of pollinating activity, 
as well as the resulting reduction in the floral and faunal diversity of the soil (Abebe et al., 
2022; Domergue, 2017; Pahalvi et al., 2021; Prashar & Shah, 2016). 

The modernization of agriculture has transformed natural agrarian systems into other new 
conventional ones, making it possible to exponentially increase agricultural production 
(Harwood, 2019; Rockström et al., 2017; Shattuck, 2021). This intensification aims to ensure 
food security, which has been proportional to the demographic increase in the world's 
population and has warded off shortages and famines, to the detriment of biodiversity 
(Douxchamps et al., 2016; Harwood, 2019; Shattuck, 2021). The agricultural revolution has 
been the subject of several controversies since the last half of 20th century (Cornu, 2021; 
Shattuck, 2021; Yadav & Anand, 2022). The agricultural activities have changed, in 
particular the installation of monoculture, deep plowing, and genetically modified crops 
GMCs (Jacobsen et al., 2013; Wu et al., 2021). Despite the massive reliance on pesticides, 
the resilience of monoculture systems against pest infestations remains limited, because the 
reliance on a single crop makes these systems vulnerable to widespread damage from pest 
attacks and diseases, as they can easily adapt and exploit the lack of genetic diversity among 
the cultivated plants (Altieri, 2009; Cook, 2006; Sarker et al., 2007; Sekine et al., 2021; Ziaie-
Juybari et al., 2021). Monocultures rely on chemical fertilizers primarily due to the specific 
nutritional requirements of the single crop being cultivated over large areas (Altieri, 2009; 
Clapp, 2023; Fitzgerald, 1990; Kloppenburg, 2005). When a single crop dominates the 
landscape, it depletes the soil of particular nutrients essential for its growth, resulting in 
nutrient imbalances and reduced soil fertility over time (Bhattacharya, 2019; Bitew et al., 
2019; Rosset & Altieri, 2017). To maintain high yields and meet the nutritional needs of the 
crop, farmers turn to chemical fertilizers to supplement the missing nutrients (Clapp, 2023; 
Fitzgerald, 1990; Kloppenburg, 2005). This leads to the destruction of ecological functions, 
services, and negative impacts on human health (Altieri, 2009, 2018; Cornu, 2021; Rosset & 
Altieri, 1997; Shukla et al., 2019). 

In Morocco, the conditions for agricultural production have become increasingly difficult, 
particularly with the disastrous impact of the Covid-19 pandemic (Vodounou & Doubogan, 
2016). Equally, the accentuation of climate change phenomenon has led to increasing 
temperatures and low water availability, which are very crucial for the agriculture 
(Abdelmajid et al., 2021; Abedin et al., 2019; Ferioun et al., 2023; Hssaisoune et al., 2020). 
It is predicted that there will be 43 megacities like Wuhan and Paris that will exceeding 11 
million inhabitants in 2050, and more than two-thirds of the world's population able to live 
in urban areas (Laborde et al., 2020; Maja & Ayano, 2021). Climate change, resulting from 
anthropogenic activities, presents an unprecedented challenge for agriculture. Rising 
temperatures, altered precipitation patterns, and extreme weather events have disrupted 
traditional growing seasons and heightened the incidence of crop failures (Abdelmajid et al., 
2021; Bezner Kerr et al., 2019; Ferioun et al., 2023; Mukhopadhyay et al., 2021; Mutengwa 
et al., 2023). Moreover, changing climate conditions have facilitated the spread of pests and 
diseases (Adams et al., 1998; Elad & Pertot, 2014; Shrestha, 2019), further jeopardizing 
global food security (Altieri et al., 2015; Mukhopadhyay et al., 2021; Mutengwa et al., 2023). 
As agriculture is both a contributor to and a victim of climate change, a comprehensive and 
sustainable response is urgently needed. 

In the face of these interconnected challenges, this critical situation has given rise to a 
new model of agriculture more resilient and sustainable called agroecology, which has 
emerged as a promising and holistic approach to mitigate the risks posed to the environment, 
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soil, ecosystem services and the health of both human and animal species (Debray et al., 
2019; Francis et al., 2003; Gliessman, 2018; López-García et al., 2021). Agroecology is an 
interdisciplinary approach that comprises three strands: a scientific discipline integrating 
multiple fields, agricultural practices utilizing natural processes for sustainable productivity, 
and a social movement empowering farmers and promoting inclusive food production 
(Altieri, 2018; Migliorini & Wezel, 2017; Shiming & Gliessman, 2017; Wezel, 2017; Wezel 
et al., 2009, 2014). It reconciles agriculture with biodiversity conservation, emphasizes 
context-specific methods, and advocates for farmer empowerment and participation in the 
food system (Bezner Kerr et al., 2021; Jeanneret et al., 2021; López-García et al., 2021). 

Given this context, the purpose of this review paper is first to discuss the three major 
problems of agriculture, including climate change and its impact on agriculture, chemical 
fertilization, monoculturing and environmental health, at the local, regional and global scale. 
In the second part, we defined the different concepts that bring together the agroecological 
approach: (i) agroecology as a scientific discipline, (ii) as a practice by defining the different 
agroecological practices and their scale of application, and (iii) the politico-economic aspect 
of agroecology. In the third part, we have proposed the agroecological alternatives that can 
remedy the three problems presented in the first section, while basing ourselves on several 
recent studies and research that can examine whether agroecological practices have had 
positive results on monoculture, chemical fertilization, and climate changes. 

Major problems of contemporary agriculture 

Impacts of climate changes on agriculture 

The continued accumulation of greenhouse gases GHGs in the globe atmosphere is 
projected to worsen in the upcoming future i.e increasing the average global temperature, 
changing the amount and distribution of precipitation, and increasing the frequency and 
severity of extreme weather events, which results in climate change, characterized by low 
rainfall, severe drought, strong winds, or floods that can destroy crops and cause post-harvest 
losses (Alexandridis et al., 2023; Mballo et al., 2019; Mutengwa et al., 2023).These 
phenomena pose serious threats to agriculture and therefore to households that potentially 
live of natural resources (Chien et al., 2023; Kabore et al., 2019), such as air, water, solar 
radiation, soil, and other products that are used to produce energy like wind power, 
hydropower, solar power, biomass, and biofuel (Hanif et al., 2019). In fact, (Chien et al., 
2023) attested that NR (Natural Resources) are being depleted by the integration of 
technologies of food, water, and energy (Al-Ansari et al., 2017). Lieberei & Gheewal (2017) 
affirmed the mitigation of NR used for electricity generation and consumption of energy, 
increasing the emissions of GHGs. Loss of trees, decreased fishing, use of fossil fuels, and 
water usage are all linked to the depletion of NR (Chien et al., 2023). Climate change affects 
differently humans, natural ecosystems, and infrastructures depending on the environmental 
changes and geographical location (Cramer et al., 2018). The population of the Middle East 
and North African countries multiplied from 1960 to 2015, and during this same period, the 
rate of urbanization doubled from 35 to 64% (Elgendy & Abaza, 2020). Farmland 
management is intensifying, in particular, through better irrigation, as many agricultural soils 
in the East and South seem to have the potential to increase yields. Agricultural organisation 
is therefore likely to change with the different influences on water resources, biodiversity, 
and the functioning of the natural landscapes (Clergue et al., 2005). Climate change has a 
variety of effects on the ecosystem, including the intensification and acceleration of soil 
salinity problems, especially in arid and semi-arid regions and coastal agricultural areas, with 
significant implications for global food security. It may also result in higher CH4 and N2O 
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emissions (Corwin, 2021; Mukhopadhyay et al., 2021). Soil microbiome plays a crucial role 
in ecosystem health through biogeochemical cycling, bioremediation, plant growth, and 
primary productivity (Cavicchioli et al., 2019). Climate change perturbs microbial profiles 
and their functions through changes in carbon/nitrogen cycling (Naylor et al., 2020), 
resulting in positive effects such as GHGs emissions or negative effects like carbon 
immobilization into microbial and plant biomass, soil warming, and elevated CO2 levels 
(Sulman et al., 2014). Furthermore, it induces genetic changes and the extinction of some 
species (Idris et al., 2022). Variations in air temperature, rainfall, and the intensity and 
frequency of extreme weather events can have direct or indirect effects on climate change, 
which can lead to negative consequences (Lacetera, 2019). Climate change has been forecast 
to cause more droughts in the near future across the majority of the world's regions, with an 
increase in the area impacted by drought from 15.4 to 44% by the year 2100 (Idris et al., 
2022). The region considered to be most vulnerable is Africa. According to Cavicchioli et 
al. (2019), increasing temperatures and drought are having major impacts on crop growth. 
Major crops yield in drought-affected areas were predicted to drop by more than 50% by 
2050 and by nearly 90% by 2100 (Li et al., 2009). Heat stress can negatively impact animal 
health directly by causing oxidative stress, metabolic changes, immune suppression, and 
mortality. Climate change indirectly impacts microbial abundance, disease spread (Lacetera, 
2019), and food and water scarcity (Abdelmajid et al., 2021; Chien et al., 2023; Hssaisoune 
et al., 2020; Idris et al., 2022; Matthan, 2022; Mutengwa et al., 2023). Temperature and 
precipitation changes lead to increased pesticide use (Idris et al., 2022; Kaka et al., 2021), 
toxicity, decreased bioavailability, altered earthworm growth patterns, and increased 
acidification and eutrophication potential (Leal Filho et al., 2023; Matthan, 2022; Mutengwa 
et al., 2023; Parmesan et al., 2022; Pimbert, 2015). Insects face declining populations and 
shifting distributions due to climate change affecting agriculture (Sánchez-Guillén et al., 
2016; Shrestha, 2019). One of the most significant main elements determining the severity 
of soil erosion in the future is the spatiotemporal variation in precipitation intensity and 
duration leading to floods, that is predicted for the coming decades (Corwin, 2021; Cramer 
et al., 2018; Eekhout & De Vente, 2019; Leal Filho et al., 2023; Leippert et al., 2020), as a 
result of climate change (Pal & Chakrabortty, 2019). Erosion depletes topsoil depth, soil 
organic carbon, and nutrient status (Mandal et al., 2023), impacting soil texture and structure, 
available water holding capacity, water retention, and transport properties (Pimentel & 
Burgess, 2013). It strongly exacerbates the depletion of N, P, and K (Lal, 2001; Lobo et al., 
2005) which impacts crop yield (Mandal et al., 2023), reduces the CEC (Lal, 1988; Mandal 
et al., 2021) and increases soil bulk density (Frye et al., 1982; González-Rosado et al., 2021). 
One of the most regular and virulent extreme weather events worldwide is flooding (Balgah 
et al., 2023). Floods directly affect food insecurity (Ahmad & Afzal, 2021; Ashraf et al., 
2013), through the loss of households and agrarian assets (Ashraf et al., 2013), such as 
livestock and stored crops (Buchenrieder et al., 2021), but also indirectly through mortality, 
forced migration, or labor loss due to soil destruction and land degradation (Ashraf et al., 
2013). Wind erosion poses a particular threat to soils, blowing away their surface layers and 
carrying them over long distances. This is facilitated by traditional cultivation practices that 
destroy soil structure, lack of perennial grasses and cover crops, inadequate field plantations, 
and forestry, and lack of water. Sandstorms cause great damage, especially in grasslands. 
Wind erosion ranges from 6 to 7 million hectares in normal years, but can cover up to 20 
million hectares of agricultural land in sandstorm years (Moldavan et al., 2023). In terms of 
water, the consequences of climate change have two dimensions like the availability of water 
and its quality that intimately related to human health risks (Abedin et al., 2019; Anik et al., 
2023; Lobo et al., 2005). With rapidly growing urbanization, transport and other factors, air 
and water pollution are only increasing despite local improvements in wastewater treatment 
processes. Political conflicts also apply considerable force on the environment, and 
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migratory pressure continues while impacting resource-poor economies, finding it difficult 
to adapt to environmental changes (Cramer et al., 2018). 

Climatic conditions affect directly agriculture, which is one of the sectors most vulnerable 
to the risks of global climate change (Aguilera et al., 2020; Singh Malhi et al., 2021), due to 
its enormous size and sensitivity to weather conditions with significant economic effects 
(Mendelsohn & Mendelsohn, 2009). The production of crops is substantially impacted by 
variations in climatic events (Ahmad & Afzal, 2021; Chien et al., 2023; Faye & Braun, 2022; 
Idris et al., 2022; Kew et al., 2021; Matthan, 2022; Singh Malhi et al., 2021). Fluctuations of 
climatic conditions, in particular the drop in rainfall coupled with thermal warming and 
human activities, cause the imbalance of ecosystems which leads to impacts on farming 
practices that affect the lives of populations and more specifically that of farmers (Matthan, 
2022; Mballo et al., 2019), in particular small and marginal farmers that are less able to adapt 
to climate change, which increases their vulnerability to losses, due to a lack of awareness 
(Baul & McDonald, 2015) and a lack of management strategies and financial impacts, 
especially for African countries (Biber-Freudenberger et al., 2016). Farmers' net income has 
been observed to drop dramatically as temperatures rise or precipitation falls (Matthan, 2022; 
Mballo et al., 2019; Singh Malhi et al., 2021). Further, the negative impacts of climate change 
on agriculture can be increased tenfold by two mechanisms: (i) the non-proportional 
interactions between the different components of the climate system and (ii) the interactions 
with the depletion of natural resources and other components of climate change, including 
those of the Earth system, freshwater use, nutrient cycles and the entire biosphere (Steffen et 
al., 2015). Tropical regions are more affected by climate change overall because tropical 
crops are still closer to their high-temperature optimums and are therefore more susceptible 
to high-temperature stress during elevated levels of temperature (Singh Malhi et al., 2021). 
According to his study, Idris et al. (2022) showed that climate change will have an effect on 
places with temperatures higher than 30 °C, soil moisture below 20%, little rainfall, and 
lower than average vegetative photosynthetic activity. In general, the impact of changing 
precipitation patterns, rising temperatures, and CO2 fertilization differs depending on the 
crop, the area, and the degree of change in the parameters. The yield is found to decrease 
when temperature rises, but the influence of the rising precipitation is probably countered or 
lessened (Adams et al., 1998; Altieri et al., 2015; Singh Malhi et al., 2021). These worrying 
worldwide changes highlight the need for new standards and strategies that can provide more 
advanced food production systems that are resilient to climate change and resource depletion 
(Cramer et al., 2018; Leal Filho et al., 2023; Malek et al., 2018; Mutengwa et al., 2023; 
Parmesan et al., 2022; Saj et al., 2017). These new approaches are suggested to guarantee 
food sovereignty, especially in regions of high risks, such as Mediterranean areas impacted 
by climate change (Cramer et al., 2018; Malek et al., 2018). 

Agricultural management changes  

Monoculturing and environmental health 

Monoculture is the annual production of the same plant species on a farm, for one or more 
years (Andres et al., 2016; Utomo et al., 2016). It is a commercial mode of production that 
has been predominant in recent decades and has largely integrated food market systems, as 
it is mass-produced (Woźniak, 2020). Monoculture has been adopted by farmers around the 
world, however, researchers have shown that monoculture can lead to several frequent 
declines in soil quality (Manici et al., 2013; Xiong, Zhao, et al., 2015). For example, Zhao et 
al. (2018) have currently showed that coffee monoculture, in the long term, decreased soil 
pH and organic matter content, while it increased soil salinity, which severely inhibited the 
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growth of coffee plants and therefore affected its yield. The richness of soil bacteria and of 
fungal communities also declined with continued coffee cultivation (Zhao et al., 2018). 
Similarly, Xiong et al.  (2015) have demonstrated that continuous and long-term cultivation 
of black pepper resulted in a significant decrease in organic matter content, soil pH, and 
enzyme activities. These led to a decline in the abundance of soil bacteria, hence 454 
pyrosequencing analyzes of 16S rRNA genes revealed that acidobacteria and proteobacteria 
were the major phyla that dominated 73% of the soil around black pepper plants. Similarly, 
the relative abundance of the Bacteroides and firmicutes phyla was depleted with continuous 
cultivation, and at the genus level, the abundance of Pseudomonas decreased significantly 
after 21 years of monoculture (Xiong, Li, et al., 2015). Further, Liu et al. (2014) also 
confirmed this finding and have revealed that soil bacterial communities formed by potato 
monoculture have increased soil incidence of Fusarium wilt disease which impacted the 
performance of this crop. When a crop is grown as a monoculture, the microbial community 
is instantly exposed to the roots of that plant, selecting certain groups of microorganisms, 
namely soil pathogens, which are responsible for debilitating the yield of that crop (Cook, 
2006). Several studies on the monoculture of soybeans (Bai et al., 2015), melon (Soriano-
Martín et al., 2006), bananas (Chen et al., 2013), and apples (Mazzola & Manici, 2012). With 
regard to yield and plant biomass, it turned out that the latter dropped significantly, in 
monoculture. This was supported by the study conducted by Zhao et al. (2018), which 
showed that shoots and dry weight of coffee decreased significantly with increasing years of 
monoculture. Similarly, Strom et al. (2020) found that soybean did not have a high yield after 
planting it directly after five years of continuous maize cultivation. Further, continuous 
cultivation of black pepper severely inhibits its growth (Xiong et al., 2015). Continuous 
cultivation or monoculture can lead to an unhealthy and unsustainable environment, easily 
developing diseases and draining the soil from its nutrients, which is responsible for 
debilitating yields (Salaheen & Biswas, 2019). The crops grown in the genetically 
homogeneous monocultures that characterize industrial farming are neither able to feed the 
world's expanding population nor resilient to the more frequent and destructive climate 
extremes (Altieri et al., 2015; Reza & Sabau, 2022). For instance, Wright et al. (2017) found 
that crop species grown in plots with higher biodiversity were, on average, less adversely 
affected by flooding, and the plants with higher system leaf area and higher root system 
performed better. Furthermore, plots with mixed crops had higher soil porosity, which 
positively impacted plant performance. The negative impact of flooding on the performance 
of monocrops is primarily due to limited gas exchange due to slower gas diffusion in water 
compared to air, and low light intensity in turbid floodwaters, thereby causing an energy and 
carbohydrate deficit (Sasidharan & Voesenek, 2015), inhibiting plant growth, and eventually 
its survival (Mommer & Visser, 2005; Nguyen et al., 2018; Zhou et al., 2020). According to 
the survey carried out by Reza & Sabau (2022), it has been shown that monocropping has a 
negative impact on soil depletion and contributed to a decrease in soil nutrient diversity. 
Although this cropping system is commercially efficient and profitable, it provides an 
unbuffered niche for parasitic species, increasing the crop's vulnerability to opportunistic 
insects, plants, and microorganisms (Blary et al., 2021; Dolezal et al., 2019; Suarez et al., 
2023). Because a single crop is more vulnerable to a particular pathogen or pest, it accelerates 
the spread of diseases and pest outbreaks (Biber-Freudenberger et al., 2016; Cui et al., 2023; 
Kaur et al., 2021), increasing farmers' intensive reliance on pesticides and fertilizers, which 
affects water quality, human health, and wildlife population (Rahman, 2023). Increased use 
of chemical fertilizers and synthetic pesticides will ultimately increase emissions of 
greenhouse gases such as N2O (Reza & Sabau, 2022). Compared to monocultures, 
intercropping contains more water, biomass, root system, and litter and can supply habitat 
for more organisms and contribute to flood mitigation, soil conservation, habitat quality, and 
carbon storage (Li et al., 2020; Ma et al., 2022; Sun et al., 2021). Climate change will increase 
the likelihood and severity of droughts into the future in many worldwide locations 



Journal of Agriculture and Environment for International Development - JAEID 2023, 117 (2): 41 – 98  
DOI: 10.36253/jaeid-14672  

 

 

47 

(Abdelmajid et al., 2021; Altieri et al., 2015; Chien et al., 2023; Leal Filho et al., 2023; 
Moldavan et al., 2023; Mutengwa et al., 2023; Shukla et al., 2019). Natarajan & Willey 
(1986) studied the effect of drought on improved yields with multicropping by manipulating 
water stress on intercrops of sorghum and peanut, millet and peanut, and sorghum and millet. 
All the intercrops overyielded consistently at five levels of moisture availability, ranging 
from 297 to 584 mm of water applied over the growing season. Finn et al. (2018) found that 
grassland monocrop with experimental drought, decreased strongly the yield by 66%, in 
contrast, mixtures increased yield by 33% compared to the average of monocultures. Altieri 
et al. (2015) attested that multicropping has been shown to have higher yield stability and 
less productivity loss during drought than monocropping. The effects of drought on yield 
depend on environmental conditions, including agricultural intensity (Sun et al., 2021; Vogel 
et al., 2012; Zwicke et al., 2013), as well as pre-drought conditions and soil type, in 
particular, soil moisture retention properties (Hofer et al., 2016). Extreme weather events last 
longer, droughts become longer, moisture deficits during plant development during 
vegetation increase, soil moisture declines, and new pests and plant diseases appear (Cui et 
al., 2023; Moldavan et al., 2023) that agroecological farms are better able to counteract 
through the use of genetically diverse varieties of cultivated plants (Chien et al., 2023; Cui 
et al., 2023; Ma et al., 2022; Moldavan et al., 2023). Pathogen development and survival are 
most likely to be impacted by projected climate changes (Elad & Pertot, 2014). It is projected 
that a crop will become more vulnerable to numerous pests, diseases, and weeds as a result 
of changes in an area's climate or weather pattern. While yields are predicted to decline at 
lower latitudes, they are forecast to increase in countries with high and middle latitudes 
(Rosenzweig et al., 2001). However, estimates indicate that a one-degree increase in 
temperature will result in a 10–25% increase in losses from insect pest infestation (Deutsch 
et al., 2018; Shrestha, 2019). 

Fertilizer practice changes 

Fertilization is the application of mineral and organic fertilizers to increase the 
productivity of soil, which is a common and pioneering practice in agriculture (Verma et al., 
2005). It serves to improve the availability of nutrients for crops, and therefore their yields 
(KOTAIX et al., 2019). However, the intensive use of chemical fertilizers can also affect soil 
properties and those of microbial communities and their functions (Pahalvi et al., 2021; van 
der Bom et al., 2018). Excessive use of nitrogen fertilizers can leach nitrates into water 
bodies, causing eutrophication and affecting aquatic life and drinking water quality (Khan et 
al., 2018). Phosphate is adsorbed on soil particles and transported to water bodies by soil 
erosion. Long-term excessive fertilizer use causes soil acidification, with long-term effects 
on soil productivity and soil protection (Mandal et al., 2020). In recent decades, the use of 
fertilizers and pesticides has increased the exposure of farmers, farm workers and the general 
population to these chemicals (Gupta, 2008). Dhankhar & Kumar (2023) attested that when 
fertilizers are applied to croplands, they are either directly or indirectly distributed into grains 
and vegetables, harming human health and lowering the nutrient density of the dominant 
plants. For instance, the nitrates and nitrites in fertilizers have been linked to cancer, birth 
defects, and other health issues like intoxications (Guo et al., 2020; Savci, 2012). 
Furthermore, lead and cadmium-based fertilizers can be hazardous to both humans and 
animals, resulting in health difficulties such organ damage, neurological abnormalities, and 
developmental problems (Dhankhar & Kumar, (2023).  Furthermore, Sharma (2017) 
reported that according to the U.S Environmental Protection Agency EPA’s Office of 
Pesticide Programs, most of the pesticides contain ingredients that are cancerogenic to 
humans. 
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The continued use of fertilizers hardens the soil, and can even modify its pH by increasing 
its acidification. For example, Pan et al. (2021) found that P addition slowed the process of 
nitrification in urea-treated soils, where a high N:P ratio appeared to be a major barrier. 
Ammonia-oxidizing bacteria's (AOB) response, which was more responsive to P addition 
than ammonia-oxidizing archaea's (AOA's) response, further corroborated this. The findings 
of this study indicated that the nitrification process in soil amended with urea was slowed by 
the application of P fertilizer, indicating that a synergistic feature of N and P nutrient 
management should be further investigated to slow N losses from agricultural systems. 
Furthermore, the most frequently form of nitrogen or sulfur fertilizer in soil is nitrates or 
sulfate (S) (Brito et al., 2007; Vandenberghe et al., 2012), which is likely to exacerbate 
secondary salinization in the soil layer (Lu et al., 2019; Shen et al., 2016). Increased 
secondary salinization may lead to a reduction in soil fertilizer availability, which would 
reduce the productivity of crops, like cotton (Osanai et al., 2017; Tian et al., 2018), sunflower 
(Aziz et al., 2019), and maize (Lu et al., 2019; Rajeshwar & Khan, 2010). These will 
contribute to a drop in the content of organic matter in the soil, humus and the useful 
microbial load, relating to the decrease in quality of agricultural land, stunted plant growth, 
which is responsible for greenhouse gas emissions (Pahalvi et al., 2021). On the other hand, 
the excessive and long-term application of the chemical inputs is confirmed to contaminate 
the soil by heavy metals, including arsenic, mercury, and cadmium which are present either 
in the raw materials of the fertilizers (Atafar et al., 2010; Pogrzeba et al., 2018). Some Heavy 
Metals are required for plant development, such as, Fe, Cu, Mn, Mo and Zn, although they 
can be toxic to plants when present in excess. In addition, there are other Heavy Metals (Cd, 
Hg, Pb) that are irrelevant to plant development and can damage plants (Pogrzeba et al., 
2018). The infiltration of these constituents, during the production processes, cannot be fully 
absorbed by the crops, and penetrates into the groundwater which causes their contamination 
(Chen et al., 2021). Nitrogen (N), phosphorus (P) and potassium (K) are the main 
macronutrients frequently required by crops to maximize their productivity (Gautam et al., 
2020; Maathuis, 2009). Global nitrogen use, which is the single most important determinant 
of crop yield, is expected to increase by 1.6% per year until 2018, while phosphate use is 
expected to increase by 2.2% and potash 2.6%. In comparison, supplies of these three 
essentials are expected to grow by 3.7%, 2.7% and 4.2% per year, respectively (Nations, 
2015). In North Africa, Morocco and Egypt account for the majority of nitrogen 
consumption. The share of the latter in the world consumption of nitrogen is 1.7%, 1.4% for 
phosphate, and 0.5% for potassium, according to the report of the FAO (Nations, 2015). 
Skorupka et al. (2021) revealed that agriculture was found to be responsible for 80-95% of 
total ammonia emissions into the atmosphere, but at the same time, it has great potential to 
reduce them. Mineral nitrogen fertilization (particularly urea) accounts for 19.0-20.3% of 
total ammonia emissions from agriculture. Ammonia emissions have a negative impact on 
the environment and human health. Therefore, it is important to minimize ammonia 
volatilization and increase fertilizer use efficiency. In addition, due to their high dissolution 
characteristics, only 50–60% of synthetic nitrogen fertilizers given to soil are typically 
absorbed by crops (Sommer et al., 2009), while the remainder flows off into water bodies 
(surface or groundwater) (Bijay-Singh & Craswell, 2021). For plants and animals, 
phosphorus is likewise a necessary and indispensable nutrient, but unlike atmospheric 
nitrogen, which has virtually limitless global stores, phosphate rock has limited supplies and 
there are serious concerns about the future availability and price of phosphate rock (Dawson 
& Hilton, 2011). Depending on the type of fertilizer used, phosphorus availability to plants 
following chemical fertilization might vary, and even in the optimal circumstances, only 
about 25% of applied P is absorbed by plants during the first cropping season (van de Wiel 
et al., 2016). P can then precipitate (at high pH owing to the presence of calcium and 
magnesium and at low pH due to an iron and aluminum presence) (Bhattacharya, 2019), or 
can be immobilized in soil (Bindraban et al., 2020), depending on the pH and moisture of 
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the soil. When P is applied as fertilizer and flows off into surface waters, eutrophication 
results (Bindraban et al., 2020; Pahalvi et al., 2021; Pogrzeba et al., 2018). The intensive use 
of nitrogen fertilizers causes emissions of ammonia and nitrogen oxide into the atmosphere 
and therefore has the effect of harming the ozone layer, its overuse can lead to an 
accumulation of nitrates in soils, leading to their acidification and salinization (Chen et al., 
2021). In addition, the phenomenon of acidification accelerates the leaching process of 
calcium and magnesium, this can contribute to the reduction of the saturation of soils in 
nutrients and possibly their fertility (Chen et al., 2021; Pahalvi et al., 2021). These are 
suggested to influence the biodiversity and sustainability of soil. Consequently, it has 
become essential to protect and maintain soil productivity in the long term without resorting 
to destructive and unbalanced practices, in particular the irrational application of chemical 
inputs which leads to a degradation of soil quality and water (Abebe et al., 2022; Gautam et 
al., 2020; NING et al., 2017; Wu et al., 2021). 

Agroecology: Concepts and Approach 

Different concepts of agroecology 

According to (Altieri, 1992), one of the greatest pioneers of the agroecology concept, this 
discipline joins agriculture with ecology. Agroecology invites farmers to adopt the natural 
regulations of the agroecosystem to ensure their production rather than the use of chemical 
inputs, without drawing on natural resources, especially those that are not renewable 
(Gallardo-López et al., 2018). It is an integrative approach, which addresses agri-
environmental impacts, which is important to address the multidimensional challenges of 
agriculture, including climate change (Lal, 2004). Agroecological systems are able to 
maintain productivity with minimal and efficient use of chemical inputs and based on internal 
ecological processes (Ameur et al., 2020; Bezner Kerr et al., 2019, 2023; Bhattacharya, 2019; 
Dale, 2020; Ewert et al., 2023; Isaac et al., 2018). It is based on the recycling of organic 
matter, agro-silvo-pastoral integration, and the promotion of diversification in functional 
crops (Aguilera et al., 2020). As a result, there is a big difference between industrial systems 
in energy metabolic patterns and agroecological systems that show a high rate of energy that 
remains stored in internal loops (Aguilera et al., 2020). This makes agricultural landscapes 
mosaics of heterogeneous land cover patterns, providing ecosystem services like biodiversity 
conservation (Marull et al., 2019). Further, Sirami et al. (2019) demonstrated that the mosaic 
of agroecology enhances multi-trophic diversity more than semi-natural landscape cover. 

Agroecology has existed for several decades, it has initiated in 1928 by the Russian 
agronomist Basil Bensin (1881-1973) who defines agroecology as an interdisciplinary 
approach combining the ecology of cultivated plants, agricultural technology and knowledge 
of the natural and socio-economic environment (Gallardo-López et al., 2018). Between 
1930-1960, agroecology was developed from the plot or field level to a scale of the 
agroecosystem, and to finally reach the food system approach (1970-2000) (Wezel & 
Jauneau, 2011), to ensure food sovereignty (Levidow et al., 2014). The use of the concept of 
agroecology as a social movement has been strongly influenced by the various environmental 
movements against industrial and/or conventional agriculture (Gallardo-López et al., 2018; 
Levidow et al., 2014; López-García et al., 2021; Rosset & Altieri, 2017; Silici, 2014) (Figure 
1). 
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Figure 1 - Historical evolution of agroecology from the scale of the field, then the farm, 

towards the agroecosystem. 

Concept of agroecology as a science 

In terms of science, (Francis et al., 2003) have defined the agroecology as the application 
of methods and principles of ecology, economic, and social dimensions for the management 
of sustainable food systems. Recently, Gliessman (2018) defined agroecology as the 
integration of research, education, actions, and behavioural changes that can lead to 
sustainability in the ecological, economic and social domains of the agri-food system 
(Barrios et al., 2020). The concept of agroecology, which presents itself as a scientific 
discipline, studies the interactions between the ecosystem and human activities without 
resorting to judging the results obtained according to their sustainability (Silici, 2014). The 
fundamental goal of this science is to better understand agroecosystems (Lacey & Lefèvre, 
2015). 

Agroecosystem is a unique area of cultivation, specific to a particular region, managed 
by man, in order to satisfy his food needs and all that is useful to him (Thiesen et al., 2022).  

Agroecosystems are presented as ecological entities, and provide several ecosystem 
functions and services (Raj et al., 2021). Further, Lacey & Lefèvre (2015) have defines the 
agroecosystem as a historical unit, which is sustainable, evolves over time and can be 
transformed while retaining a visible identity over time. It involves several components, 
including: i) Microorganisms, mineral elements, genetic, anatomical and physiological 
structures of plants, and diseases affecting plants and animals; ii) Farmers' well-being, 
aspirations, knowledge-producing practices, values and cultures; iii) Objects used for 
experiments, such as seeds, land, agricultural mechanization and equipment, division of 
agricultural fields, water sources, animals, plants, microorganisms and humans; vi) Farms, 
communities and natural ecosystems. Its functioning depends mainly on the edaphic, 
climatic and atmospheric conditions, and on the relations with the social, cultural and 
political whole in which it is designed. Agroecology has proposed the convergence of several 
disciplines, such as agronomy, ecology, sociology, economics and philosophy so that it 
stands out as a transdisciplinary field (Gallardo-López et al., 2018). The FAO (2016) has 
attested that agroecological innovations apply ecological principles, including: (i) recycling 
of biomass; (ii) efficient use of natural resources (solar radiation, air, nutrients and water 
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sources); (iii) reducing external inputs; (iv) increasing biodiversity and (v) maintaining soils 
and synergies to implement resilient agricultural systems that promote interactions between 
plants, animals, humans and the environment, for food security and nutrition. However, this 
definition has been readjusted by that of Altieri (1992) who defines agroecology as a science 
that applies ecological concepts and principles, for the management of sustainable food 
systems. The report HLPE (2019) defined agroecology as a transdisciplinary science, which 
combines different disciplines, in order to overcome the challenges facing agriculture today. 
It is in partnership with several stakeholders, analysing their local knowledge and cultural 
values. All these in a reflexive and iterative way, allowing mutual learning between 
researchers and practitioners, as well as the horizontal dissemination of knowledge from 
farmers to others, and any relevant actor along the food chain. 

The definitions, interpretations, and methods have changed since it was originally used 
in the early 20th century. Agroecology definitions have multiplied recently as many 
organizations and nations define it according to their concerns and goals. These definitions 
acknowledge the interdisciplinary nature of an agroecological approach, which includes 
science, a set of practices, and a social movement (Isaac et al., 2018; Méndez et al., 2013; 
Wezel et al., 2009) they also acknowledge the concept's application to entire agri-food 
systems, from food production to consumption and everything that occurs in between 
(Francis et al., 2003; Wezel et al., 2020). 

Concept of agroecology as a set of practices  

The ultimate goal of agroecology is the transformation of the conventional agricultural 
system in sustainable agriculture (Altieri et al., 2017; Gliessman, 2018). The transformation 
of agriculture based on high amount of input of fertilizers and pesticides which are moreover 
dangerous for the health of humans, animals and the environment to rural development by 
promoting agricultural practices as an alternative to conventional and/or industrial 
agriculture (Altieri et al., 2017; Gliessman, 2018; Kremen et al., 2012). A set of 
agroecological practices is implemented to ensure a transition to more environmentally 
friendly and sustainable agricultural systems, while optimizing the use of biological 
processes and ecosystem functions (Deguine et al., 2017; Duru et al., 2015; FAO, 2016; 
Pimbert, 2015; Rosset & Altieri, 1997; Wezel et al., 2014; Wibbelmann et al., 2013). 

According to Wezel et al. (2014), agroecological practices can be considered as agrarian 
applies aimed to produce considerable quantities of food while valuing ecological processes 
and ecosystem services by integrating them as fundamental elements in the development of 
said practices. Agroecological practices are in contrast to a simple dependence on external 
inputs, such as the application of chemical fertilizers and toxic pesticides, or on technological 
solutions, including genetically modified organisms (Valenzuela, 2016). This assumes that 
biological processes are able to replace chemical or physical inputs, or more simply to 
interact favorably with them while limiting external costs, in particular, environmental costs 
(Wezel & Silva, 2017). As an applied science, agroecology uses ecological principles, as 
mentioned above, for the management of diverse agroecosystems in which chemical inputs 
are replaced by biological processes such as: natural soil fertility, allelopathic effects, and 
biological control. Each practice is linked to one or more principles, thus enabling its 
participation in the functioning of agroecosystems (Wezel & Silva, 2017).  

In the previous review, Wezel et al. (2014), presented agroecological practices by 
classifying them according to the method of (Hill & MacRae, 1996). For Shiming & 
Gliessman (2017), agroecological practices are ecologically sound methods that can balance 
and improve all the services that agroecosystems provide, such as nutrient recycling, 
biological fixation of nitrogenous (N), natural regulation of pests, soil, conservation of water 
and biodiversity, as well as carbon sequestration (Wezel et al., 2014). Therefore, 
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agroecological practices can greatly contribute to the sustainable development of agriculture. 
During their analysis of agroecology as a practice, Gallardo-López et al. (2018) mentioned 
three important elements in this concept counting (1) crop production, (2) animal production 
and (3) landscape diversity. 

Agroecology as a practice for plant production 

This research focuses on the transition from conventional to sustainable agriculture, 
which is reputed to be safer. According to Phocas et al. (2016), agroecology uses ecosystem 
services, ecological processes and local/natural resources instead of chemical inputs to 
design productive and resilient livestock and crop production systems. 

This was also supported by Rusch et al. (2017), who reported that the intensification of 
ecological practices across landscape heterogeneity affects positively the biological control 
of vineyard pests. The monitoring of these practices by farmers is an original approach aimed 
at identifying and analyzing alternative systems and ensuring their development. Similarly, 
Alaphilippe et al. (2013) studied the environmental impacts of nine apple orchard systems 
using life cycle analysis, and showed that low input systems planted with cultivars with low 
disease susceptibility, reduced environmental impacts by 6-99%. Equally, potential toxicity 
was reduced by 2-40% for humans, 71-82% for aquatic life, and 97-99% for terrestrial life 
by using mechanical control rather than toxic pesticides against weeds and diseases. 

Agroecology as a practice for animal production 

In this side, the aspect of agroecology focuses on agroecological practices for the 
management of sheep, cattle, and pigs, attested that farmers depend on a range of resources 
to feed their animals and how they combine these resources to play an important role from 
an agroecological point of view (Aubron et al., 2016).  

For example, in the case of cattle breeding, this activity is judged as one of the main 
contributors to environmental deterioration, use of unsustainable technologies and the 
emission of greenhouse gases into the atmosphere (Cisneros-Saguilán et al., 2015; Herrero 
et al., 2013). However, Sommer et al. (2009) reversed this trend by demonstrating that 
changes in management manure, such as separation and incineration of the solid fraction, 
can induce changes in CH4 and N2O emissions, and in carbon sequestration. Further, the 
introduction of environmental alternatives can vary significantly depending on farming 
practices and climatic conditions.  

In a survey carried out by on organic cattle farming systems, Vaarst & Alrøe (2012) 
demonstrated that organic conceptions of animal welfare, linked to the principles of organic 
farming, can very well explain to cattle breeders their natural behaviours and needs, such as 
feeding ruminants that are polygastric, like ruminants and not like monogastric organisms. 
The introduction of livestock can potentially contribute to the management of shrub invasion, 
by designing a multitude of appropriate livestock management and feeding practices and soil 
conservation as found by Girard et al. (2008). 

Agroecology as a practice for biodiversity and the landscape 

Landscape ecology contributes greatly to the development of agroecology (Jeanneret et 
al., 2021). Agroforestry, for example, is now increasingly discussed as an alternative to 
conventional agriculture, since it is a practice that enhances biodiversity and provides 
additional ecosystem services (Jose, 2012; Moreno et al., 2018; Pantera et al., 2018). It 
combines the use of trees with annual crops or fodder plants and possibly with livestock on 
the same plot (Somarriba, 1992). The components interact with each other and create 
synergies, if well-chosen and well arranged, which maintains long-term productivity and 
leads to great resilience (Rosati et al., 2018). The promotion of biological pest control is a 
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major pillar of agroecology, as it supports natural ecosystem processes reducing the use of 
pesticides by complexifying ecological networks at all scales (Bohan et al., 2013). Its 
purpose is to improve pest management by supporting existing natural enemy populations in 
the agroecosystem and promoting their effectiveness in reducing pest populations. Many 
studies have thus focused on the impact of landscape heterogeneity on the abundance of pests 
and their suppression by natural enemies with the aim of promoting biological control (Begg 
et al., 2017; Petit et al., 2020a). The abundance and species diversity of natural enemies 
should together improve natural pest control (Dainese et al., 2019). 

Recently, Petit et al. (2020) have explored the potential of the spatial expansion of 
landscape-scale agroecology to improve pest management. One of the goals of agroecology 
is to promote multiple biological communities that take into consideration the important role 
of soil biodiversity for their operations (Coudrain et al., 2016). Similarly, it is proposed that 
agroecological systems rely as much as possible on the services provided by agroecosystems 
according to their principles and characteristics, for example, introducing organic matter 
(humus) into the soil and implementation of ecological infrastructures, is a condition that 
makes it possible to maintain and enhance ecosystem services and therefore to recapitalize 
ecosystems (Peeters et al., 2013). The approach of agroecology to positively impact 
biodiversity and the agricultural landscape, is a fundamental characteristic of agroecology 
that has allowed it to be considered one of the epistemological currents of sustainability, with 
a greater contribution to the design, management and evaluation of agroecosystems 
(Cisneros-Saguilán et al., 2015). 

Concept of agroecology as a social movement 

The politico-cultural proposals of agroecology took particular importance with the 
emergence of the food sovereignty paradigm in the early 1990s (Giménez & Shattuck, 2011; 
Pérez, 2016; Rosset & Altieri, 1997). The concept of food sovereignty was first introduced 
in Rome in 1996, by an international peasant movement “la Via Campesina” (HLPE, 2019). 
Further, Sélingué (2007) has defined food sovereignty as the right of people to healthy and 
culturally appropriate food, produced by ecologically sound and sustainable methods, and to 
have the right to define their own food and agricultural systems. Moreover, Saghai (2021) 
has currently proposed the following definition: “Food sovereignty is the right to direct and 
participatory democratic control over small-scale, largely autonomous and relocated 
agrifood systems based on (i) sustainability (agroecology or agriculture organic), (ii) social 
justice, (iii) gender equity, and (vi) respect for cultural diversity, nature, the value of food 
and the peasant way of life. It is also the process that leads to the full realization of this right 
and this vision for the future”.  

Generally, agroecology is seen as a bottom-up path to food sovereignty, based on 
traditional knowledge systems, supported rather than science-led, where small-scale 
producers, their communities, and organizations play the primary role, rather than agri-food 
companies (Altieri & Nicholls, 2012; Anderson et al., 2019).  Agroecological approaches 
aim to build sustainable and resilient local food systems, strongly linked to their territories 
and their ecosystems (Anderson et al., 2015; Nyéléni, 2015; Varghese & Hansen-Kuhn, 
2013). The rights to healthy food, access to agrarian land, the preservation of agricultural 
ecosystems, and the depopulation of rural areas have been debated issues at the heart of the 
agroecological movement as asserted by Montesinos & Pérez (2015). In addition, small-scale 
agricultural production or smallholdings are part of market-oriented reforms, and ownership 
of agricultural, peasant, and transnational movements (Narotzky, 2016). Based on statistical 
estimates, these small farms (often defined as < 2 ha) are suggested to represent 80% of all 
farms worldwide (Samberg et al., 2016). In 2017, it was shown that small and medium farms 
provide significant amounts of various food groups (vegetables, fruits, legumes) around the 
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world, thus contributing to human nutrition (Herrero et al., 2017). In contrast, smallholder 
farming households represent a high proportion of the world's population suffering from 
chronic food insecurity (Bosc et al., 2013). 

Gallardo-López et al. (2018) have studied the relationship between the concept of 
agroecology as a social movement, scales, and analytical factors. These authors have found 
that this concept was linked to the regional scale, that of the agroecosystem, and that of the 
agri-food system. Regarding the factors, it was related to social, cultural, economic, and 
political factors, therefore agroecology as a social movement is greatly influenced by the 
environmental movements of regional agroecosystems and agrifood systems (Massicotte & 
Kelly-Bisson, 2019). In this sense, the objective of agroecology is to achieve food security 
and sovereignty, since this has been the most important part of a movement that can meet 
the demand for the production and consumption of enough healthy food (Altieri & Nicholls, 
2012; Montagnini & Metzel, 2017). 

Agroecology: Solutions and alternatives for the major problems of 
agriculture 

 Agroecology as a systems approach to climate change 

Agroecological models have the potential to contribute to both the fight against climate 
change and the desertion of the dominant food system (Altieri et al., 2015; Dale, 2020). 
Agroecology is defined as a holistic approach to agrifood systems, it takes into consideration 
the social sciences and the politico-economic aspects of agriculture (Méndez et al., 2013). 
Equally, on local and indigenous knowledge, and uses ecological concepts to build a 
sustainable and equitable food system. Agroecological practices play a crucial role in 
mitigating the risk of climate change in agriculture. These practices promote carbon 
sequestration in soils and vegetation, reduce greenhouse gas emissions, and enhance soil 
health (Altieri et al., 2015; Bezner Kerr et al., 2019; Dale, 2020; Kaye & Quemada, 2017; 
Shukla et al., 2019). Agroecological systems are more resilient to extreme weather events 
and prioritize biodiversity conservation, contributing to climate change adaptation (Dai et 
al., 2018; Debray et al., 2019; Moldavan et al., 2023; Singh Malhi et al., 2021). By 
emphasizing water management and local adaptation, agroecology helps farmers respond to 
changing climate conditions (Abedin et al., 2019; Córdoba Vargas et al., 2020; Kabore et al., 
2019; Mutengwa et al., 2023). Harvey et al. (2014) proposed alternatives relate to climate 
change adaptation strategies, such as climate-smart agriculture and/or agroecological 
practices. These elements are suggested to reduce costs, enhance soil health and improve 
community resilience to climate change, environmental and economic challenges (Lin, 2011; 
Snapp et al., 2010). These practices include agroforestry, crop diversification, ground cover, 
integration of legumes into farming systems, and organic production methods (Bezner Kerr 
et al., 2021; Mbow et al., 2014). 

 
Figure 2 - Beneficial effect of agroecological practices on agroecosystems. 
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Agroforestry has been shown to have multiple benefits for adaptation to climate change 
(Nguyen et al., 2013). Trees colonize the soil and therefore contribute to the fight against its 
erosion (Torralba et al. 2016; Kay et al. 2019). Equally, agroforestry systems contain a high 
content of soil organic carbon and thus improve soil fertility, nutrient cycling, and content 
(Sharma et al., 2016; Torralba et al., 2016). This practice improves soil fertility, rehabilitates 
degraded cropland, increases vegetative cover, and decreases the risk of crop loss during the 
season's temporary drought, it improves water retention and infiltration (Debray et al., 2019). 
Similarly, Lin et al. (2018) have shown that local management of vegetation and ground 
cover can reduce average and maximum temperatures in gardens, which influences plant 
behaviour, and gardeners with regard to irrigation, via reduction of the quantity of water 
used. In its climate change report, IPCC (2014) summarized that practices like agroforestry 
improve cropland and livestock management, and increase soil organic carbon content which 
can significantly reduce greenhouse gas emissions (Figure 2). 

Crop rotations have been identified as one of the effective strategies to adapt to climate 
change (Bonciarelli et al., 2016; Borrelli et al., 2014). They prevent soil from erosion, 
contribute to soil management, and increase water use efficiency (Rosa-Schleich et al., 
2019). Similarly, crop rotations could help maintain a high carbon balance in soils and induce 
negative CO2 efflux (Shahzad et al., 2022). The evaluation of the different agroecological 
practices that promote adaptation to climate change, was carried out by Debray et al. (2019) 
who showed that farmers have traditionally adapted their rainfed systems (culture in "Bour") 
by implementing a few practices adapted to rainfall variability and soil fertility (Abdelmajid 
et al., 2021; Yu et al., 2022), such as: (i) The selection of shorter season cultivars to adapt to 
rainfall variability, (ii) crop rotations with a selection of crops adapted to limited rainfall 
conditions and including a fallow period of 2 to 3 years, (iii) intercropping species with 
different growth cycles and maintenance of forests for local climate regulation (cooling) 
(Figure 2). 

For a long time, ground covers have been known for their ability to reduce erosion, to fix 
atmospheric nitrogen, to reduce the leaching of nitrogen and improve soil health (Debray et 
al., 2019; Kaye & Quemada, 2017; Ruiz-Colmenero et al., 2013). In addition, the presence 
of a vegetation cover improves the biological and chemical properties of the soil and allows 
an accumulation of soil organic matter (Vicente-Vicente et al., 2016). According to Guardia 
et al. (2016), vegetative covers, under Mediterranean conditions, can be applied either as a 
substitute for fallow in winter crop rotations or as winter covers in summer crop rotations, 
or as living mulch between row crops (Canali et al., 2017).  Pantera et al. (2018) also showed 
that ground covers are of particular interest in Mediterranean woody crops, which provide 
several physicochemical, biological, and economic services. Moreover, their management 
aims to find a balance between the ecosystem services they provide, and the competition for 
soil resources with the main crops (Garcia et al., 2018).  This agroecological practice can 
improve the resilience of crop and livestock systems by providing fodder in times of resource 
scarcity (Debray et al., 2019). Carpio et al. (2017) has noticed an increase in wild animal 
species associated with the presence of vegetation covers. 

Agroecosystems can be resilient by improving biodiversity and biological soil 
management (Córdoba Vargas et al., 2020). Further, Debray et al. (2019) brought together 
agroecological practices aimed at improving soil quality. This category is for farmers located 
in sub-humid and semi-arid areas of Africa who use different types of organic amendments, 
such as compost, green manure, crop residues, and mulch. Therefore, they valorise unused 
organic material, such as compost liquid or biogas sludge which improves soil fertility. 
Enriching the soil with organic matter helps retain water (Wheeler et al., 2015), especially in 
hot and dry environments (Liu et al., 2017), which can increase carbon sequestration 
(Francaviglia et al., 2019). On the other hand, appropriate management of soil with organic 
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matter improves soil quality and increases plant productivity. At the same time, the gain in 
biomass productivity allows the incorporation of a higher rate of biomass into the soil which 
increases the soil organic matter and productivity (Aguilera et al., 2020; Liu et al., 2017). 

Farmers would potentially have to avoid industrial agricultural systems that emit 
greenhouse gases in order to adapt to the vagaries of climate change (Rosa-Schleich et al., 
2019). Reducing tillage is a practice that can save fuel, lubricants, and increased 
mechanization, which can lead to limiting the resulting environmental impacts (Lovarelli & 
Bacenetti, 2017) in particular greenhouse gas emissions (Dachraoui & Sombrero, 2020; Lee 
et al., 2019; Litskas et al., 2017; Lovarelli & Bacenetti, 2017). In agroecological systems, 
tillage is reduced or shallow and without inversion (Cooper et al., 2016), allowing the 
beneficial role of carbon sequestration (Aguilera et al., 2013). It has been shown that high 
levels of soil organic matter in organic systems reduce the mechanical energy required for 
traction (Peltre et al., 2015). In addition, the use of non-synthetic inputs in organic 
agricultural systems has three benefits; i) it reduces dependence on external energy inputs, 
ii) it allows efficiency, and iii) the rational use of fossil energy (Smith et al., 2015). These 
confer resilience to agricultural systems and adaptation to climate change (Kuzucu, 2017).  
According to Aguilera et al. (2020), the reduction of fossil fuels in sustainable agricultural 
systems is also concerned with water management and attests that irrigation can be obtained 
from solar or renewable wind energies. 

 Mixing crops as a systems approach to monoculture 

According to the various scientific articles and bibliographical reviews analysed in this 
work, we have assumed that almost of the researchers were based themselves on a 
comparison between the conventional practice of "monoculture" and the agroecological 
practice of "association of crops" in order to show the positive results of the latter one. 

Agroecological intercropping offers a solution to mitigate the risks associated with 
monoculture in agriculture. Intercropping disrupts pest and disease buildup (Gao et al., 2014; 
Hei et al., 2022; Kaur et al., 2021; Peeters et al., 2013), improves nutrient efficiency, 
enhances soil health (Cuartero et al., 2022; He et al., 2021; Wezel, 2017; Wezel et al., 2014), 
and promotes biodiversity (Bybee-Finley & Ryan, 2018; Jeanneret et al., 2021; Petit et al., 
2020; Thiesen et al., 2022). Intercropping also provides economic benefits and climate 
resilience, resulting in a more sustainable and resilient agricultural system. It helps reduce 
the negative impacts of monoculture while promoting a diverse and balanced agroecosystem 
(Altieri, 1995; Duchene et al., 2017a; Elouattassi et al., 2023; Esnarriaga et al., 2020; Iqbal 
et al., 2019; Wojtkowski, 2019). 

Intercropping is the simultaneous cultivation of one or more species, in the same plot and 
for at least one growing season, interacting with each other and with the agroecosystem 
(Esnarriaga et al., 2020; Kaur et al., 2021). This is a key strategy in agroecology since it 
supports the hypothesis that the complementarity of nutrient acquisition between associated 
species allows efficient exploitation of environmental resources (Wezel et al., 2014). 
Intercropping has been dubbed “the new green revolution” because it is able to improve land 
use by harnessing the phenomenon of complementarity between species, thus providing a 
means to achieve sustainable agricultural intensification (Xu et al., 2020). 

In his review, Blessing et al. (2022) discussed the 4 models of intercropping, which are: 
• Relay intercropping: This involves planting one or more crops within an already 

established or existing crop, so that the initial growth stage of the second crop 
matches the maturity stage of the first crop, but is not yet ready for harvest. 

• Row intercropping: this involves growing of two or more crops in the same field, 
simultaneously with one or more crops grown in a separate row. 

• Strip intercropping: this refers to the cultivation of two or more crops, grouped 
together in strips, and wide enough to facilitate the work of modern agricultural 
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machinery. Also, contiguous enough to allow interaction and synergy between 
the different associated species. According to Iqbal et al. (2019), this type of 
intercropping is considered excellent for mechanical cultivation, and crop 
harvesting, and also contributes to appropriate competitiveness between 
intercropped species. 

• Mixed intercropping: In this model, the cultures are totally mixed in the available 
space without a defined line arrangement. this type of intercropping increases 
income, improves ecosystem diversity and functions, modifies soil biota and 
improves its quality, and responds to forage preferences and/or cultural requests 
(Bi et al., 2019; Duchene et al., 2017b). 

Compared to monoculture systems, intercropping systems have clear advantages in 
ecosystem services that cultivation alone cannot provide counting soil fertility, increase in 
yield, and diseases, pests and weeds. 

The positive impacts that can result from the intercropping systems are the 
complementarity between the associated crops as compared to the monoculture systems (Li 
et al., 2018). The selection of species grown in intercropping systems must be based on 
differences in vegetative architecture, in particular root depth, the aerial parts, and the 
phenological stages, in order to increase the distribution of available resources in the soil, 
and therefore, to reduce competition between species (Bybee-Finley & Ryan, 2018; Litrico 
& Violle, 2015). The introduction of legumes in intercropping systems contributes to 
improving the constraint of nitrogen limitation through biological fixation, of atmospheric 
nitrogen as demonstrated by (Bedoussac et al., 2015). 

Microbial communities are key factors in all biogeochemical cycles, they obtain mineral 
nutrients from the soil (Delgado‐Baquerizo et al., 2017; Jacoby et al., 2017), they maintain 
soil fertility by breaking down organic matter, and support sustainable plant growth and 
productivity (Itelima et al., 2018). Further, Zhang et al. (2021) demonstrated that the 
intercropping systems modify the number of microorganisms and the enzymatic activities of 
the soil, which in turn regulate the genes involved in the cycles of N and P and the renewal 
of organic matter. Equally, Zhang et al. (2021) found that intercropping of sugarcane/peanut 
significantly increased N and P available, and regulated pH and acid phosphatase activity, 
which are very important in the use of soil P in intercropping systems (Li et al., 2004), 
compared to groundnut monoculture. Similarly, Zhang et al. (2021) demonstrated that 
sugarcane/peanut intercropping improves physicochemical properties by altering N and P 
cycling and soil organic matter turnover of the root zone. Zhou et al. (2018) also confirmed 
that lily/maize intercropping can increase the relative abundance of beneficial bacteria and 
affect the diversity and structure of the microbial community in the lily rhizosphere. 
Generally, this agroecological practice has a strong effect on soil pH, nutrients, and enzymes 
(Liu et al., 2021). 

One of the main reasons for adopting intercropping is to produce a higher yield than 
monoculture, in the same area and in a given period (Renwick et al., 2020). Willey (1990) 
considered this practice to be an economical method because of its high production and 
minimal use of chemical inputs. The higher production of intercropping results from 
increased growth rate, biomass production, and efficient use of nutrients and space (Zhang 
& Li, 2003). According to Bedoussac et al. (2015), there are three phenomena of plant-plant 
interactions: (i) competition: when one species negatively alters the environment of the other 
species, such as competition for a resource; (ii) complementarity: when intercropped species 
do not compete for a resource (i.e. light, water, nutrient) over time and/or space, leading to a 
set of benefits, such as yield, dry weight, and species (seed) quality, especially when 
interspecific competition is weaker than the intraspecific competition; and (iii) facilitation: 
it occurs when environmental modification is beneficial for a species, such as allelopathy, or 
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the barrier effect against the disease, weed infestation, or by the transfer of a nutrient element 
(N and/or P), from one species to another. According to Willey & Rao (1980), intercropping 
improves the use of environmental resources by 10 to 50% compared to monoculture, in the 
same area, by calculating the LER index (Land Equivalent ratio). It is defined as the relative 
area needed in pure crops to have the same production as the combination of crops (Willey, 
1990). The competitive relationship between the crop components, the efficient use of space, 
and the overall productivity of the intercropping system can be accurately assessed using the 
LER (Willey & Rao, 1980). When the LER is greater than 1, the yield and growth of 
associated species are favoured by intercropping, on the other hand, when it is less than 1, 
intercropping negatively affects their growth and yield (Willey & Rao, 1980). 

Several abiotic and biotic factors, such as low soil fertility, weed infestation, diseases, 
and pests are among the main causes of yield reduction as mentioned in Table 1. According 
to Maitra (2019), the beneficial insect population that develops in intercrops keeps the pest 
population under control and reduces the need for chemical inputs. Intercropping two or 
more species alters the environmental state of the host plant, which affects the ability of the 
pest to recognize and/or identify it (Lulie, 2017). In a study conducted on intercropping 
cowpea/cotton, Chikte et al. (2008) showed that the cotton gave the best result in suppressing 
trips and whiteflies, and recorded a high yield. Furthermore, it was detected that when 
soybeans were grown in close proximity to maize (i.e. 5cm), the severity of the disease 
counting red collar rot of soybeans, was significantly reduced (Gao et al., 2014). Similarly, 
Schoeny et al. (2010) noted that the severity of ascochyta blight (Mycosphaerella pinodes) 
on pea was lower in the pea-cereal intercropping system than in the weight monoculture, due 
to the modification of the microclimate inside the canopy of intercropping combinations. 
Nawaz & Farooq (2016) also reported that intercropping is a natural way to control weed 
growth. According to Girjesh & Patil (1991) and Mousavi & Eskandari (2011), intercropping 
is known to be more effective in suppressing weed infestation than monoculture. 
Intercropping has been observed as an effective tool for disease management. In 
intercropping systems, intercropping provides functional diversity that limits the spread of 
pathogens through differential adaptation due to the presence of diverse pathotypes (Finckh 
et al., 2000). Its effectiveness lies either in its ability to invade weed resources or to block 
their development by allelopathy. 

Agroecological alternatives to chemical fertilization 

The management of the cycles of mineral elements, in relation to that of carbon, is at the 
heart of the concerns of agroecology, because they are both available to the growth of plant 
and animal species (Lal, 2004). However, these mineral elements have the potential to 
contaminate the environment. Agroecology relies on internal cycles to exploit soil resources 
more efficiently than monocultures, and agroecological practices offer farmers alternatives 
to limited resources to ensure sustainable agrosystems (Dubey et al., 2020). Agroecological 
practices offer effective ways to reduce the reliance on chemical fertilization in agriculture. 
By adopting techniques such as crop rotation, cover crops, split fertilization, organic 
amendments, biofertilizers, agroforestry and intercropping, farmers can improve soil 
fertility, nutrient cycling, and water retention (Demirdogen et al., 2023; Rodríguez et al., 
2020; Wezel et al., 2014; Yu et al., 2022). These practices enhance the overall health and 
resilience of the agricultural system while reducing the need for synthetic fertilizers (Abebe 
et al., 2022; Aguilera et al., 2020; Elouattassi et al., 2023; Irhza et al., 2023; Leippert et al., 
2020; Rhioui et al., 2023; A. Sharma, 2017). Agroecology promotes a more sustainable and 
ecologically balanced approach to farming, mitigating the environmental impacts associated 
with chemical fertilization. Currently, Rafaela et al. (2022) have reported that populations in 
Mozambique use maize-legume intercrops and maize rotations with a staple crop. 
Intercropping has the potential to increase soil organic C and plant performance, allowing 
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farmers to take advantage of resources with limited access (Rusinamhodzi et al., 2016). In 
crop rotation, the biological activity of soil is enhanced, and in the case of legumes, N supply 
is assured for the next crop (Birkhofer et al., 2008; Steenwerth & Belina, 2008). Legumes 
are an important source of easily absorbable N, due to their ability to fix atmospheric N 
(Fustec et al., 2010) and release large amounts of labile carbon compounds, promoting 
microbial growth, and improving soil structure (Shepherd et al., 2006). Crop rotations and 
intercropping have been shown to be two agroecological practices that improve production 
(Rafaela et al., 2022). Vegetation covers are widely applied in agroecology to limit the use 
of chemical fertilizers, reduce the risk of water contamination by leaching, and reduce soil 
and wind erosion (Wezel et al., 2014). Agroforestry is widely considered the most holistic 
practice that can improve soil fertility, reduce erosion and improve water quality (Meragiaw, 
2017).  Many farmers grow different trees and herbaceous plants, which regularly replenish 
soil fertility, microclimatic conditions of their farms, and productivity through a continuous 
supply of organic matter and protection against erosion and leaching (Mebrate et al., 2022). 
According to Wezel et al. (2014), the application of fertilizers by splitting, over time, is a 
better match between supply and demand and can improve the efficiency of the practice and 
limit the contamination of ground and surface water by fertilizers. Nakhro & Dkhar (2010) 
compared the use of inorganic and organic fertilizers, and found that soils treated with the 
organic one had the highest number of microorganisms and a higher microbial biomass. 
Continued use of chemical nitrogen (N) fertilizers resulted in decreased phosphorus (P) 
availability, suppression of a community phoD bacterial genes, considered valuable for soil 
and plants (Chen et al., 2019). In contrast, the addition of manure in large quantities and over 
the long term positively influences the fate and dynamics of carbon (C) and nitrogen (N), as 
well as the structure microbial communities, compared to chemical fertilizer treatments and 
control (control) treatments (Gautam et al., 2020). Further, Lupwayi et al. (2019) confirmed 
this result by demonstrating that long-term manure spreading increased enzymatic activities 
and that the latter was found in the soil, after 29 years of its application (Figure 3). 

Xu et al. (2018) supported these results by showing that recurrent application of manure 
accumulates organic matter and increases the carbon stored in the soil, which acts as a 
substrate to improve microbial activity and biomass. Using compost from peanut shells is an 
effective alternative to chemical fertilizers, to improve yield without affecting soil fertility 
and the environment (Nalluri & Rama Karri, 2018). Pathak et al. (2021) reported that spent 
mushroom compost can reduce the introduction of agrochemical inputs and remediate 
degraded soil. These authors also mentioned that this type of compost has enzymes secreted 
by the mycelium in the compost, which helps the plant to develop systematic resistance, as 
well as it has derivatives of organic acids allowing the microbiomes to develop. Elouattassi 
et al., 2023) found that organic fertilization with compost provided almost similar results to 
mineral fertilization. Further, there are other types of organic fertilizers, which are also 
derived from plant or animal matter, or other organic constituents, which are either a by-
product or an end product of natural origin, containing both essential nutrients and 
micronutrients for plant growth, such as vermicompost, biochar, biosolids, biosurfactants 
(Dincă et al., 2022). The application of biofertilizers is another strategy that can reduce the 
use of synthetic fertilizers and therefore reduce environmental pollution (Mahanty et al., 
2017). Biofertilizers are either bacteria, fungi, algae or biological compounds, including 
plant growth promoting bacteria, which when applied either at the seed level or on the plant 
surface or soil, they ensure the availability of primary nutrients to the host plant (Gouda et 
al., 2018; Riaz et al., 2020; Singh et al., 2021). 
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Figure 3: The relationship between agroecological practices and agroecological 

principals. 

  Conclusions 

Through this review paper we discussed the alternatives and/or solutions to the problems 
of current agriculture, in particular climate change, monoculture, and chemical fertilization 
through the use of agroecological practices. We concluded that the vast majority of the 
studies analyzed found solutions to these problems by using agroecological practices, by 
comparing their conventional trials to agroecological trials deemed to be healthy, while 
reporting high yields of the different crops used. Further, we deduced that agroecology 
provides multiple benefits to society and the environment by restoring ecosystem services 
and biodiversity. We also demonstrated that agroforestry, intercropping and plant covers 
were the most recurrent agroecological practices, and the most commonly used in research, 
given their positive effects on the three problems mentioned above. Although the present 
study provides a clear indication of the potentially positive results of agroecological practices 
on monoculture, chemical fertilization and climate change, other studies, using rigorous 
research design, such as case controls, longitudinal studies and surveys in regions where 
agriculture is their main source of income, such as Morocco, are still needed. 
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Table 1 - Examples of associated crops and their impacts on productivities (yield and agronomic parameters, natural enemies (diseases, pests, weeds), physical 
properties, microbiological parameters of soil and LER 

Effects of 
intercropping 

Yield and agronomic 
parameters 

Diseases, pests and weeds Physical properties and 
resources 

Microbial parameters of 
soil 

LER 

Intercrops 

- Onion + Pepper 
- Onion + Fennel 
- Onion + Carrot 
With organic 
and/ or 
inorganic 
fertilization 
(Elouattassi et 
al., 2023) 

Significant increases in 
plant height, stem 
diameter, number of 
leaves/ plant, plant fresh 
weight, and bulb weight, 
as well as improved 
yield, with inorganic 
fertilization (NPK) and 
onion-carrot 
intercropping, 
showcasing their 
positive impacts on 
onion cultivation. 

  - - 

Onion + 
Fenugreek 
(Moghbeli et 
al., 2019) 

Improvement of bulb 
diameter, fresh and dry 
weight, and total yield. 
Increasing in biological 
yield, fresh, dry weight 
and plant height of 
fenugreek. 

 Reducing competition 
between resources, 
carbon dioxide, 
humidity and light. 

- > 1 
Onion and fenugreek are 
favorable for 
intercropping because 
they are complementary, 
and contribute 
interactively to the 
increase in yield per unit 
area. 

Onion or garlic 
+ Cabbage 
(Mondédji et 
al., 2021) 

 Reduction of cabbage 
worms (Hellula undalis) : 
Volatile compounds 
emitted by other cultivated 
species repel cabbage pests, 
for example onion or garlic 
produce an ally compound, 
allyl propyl disulphide 
which repeals aphids. 

 - - 

Wheat + 
fenugreek 
(Wasaya et al., 
2013) 

Net crop yield increase 
at (1:3) ratio:  
Yield of wheat grains, 
wheat straw (Kg/ha) 
Fenugreek yield 
Gross income (Rs/ha) 

   >1 
 LER has shown a 19 to 
38% yield increase for 
intercropping systems 
compared to 
monocropping. 
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Reduction in the number 
of kernels, weight per 
ear of wheat, weight of 
1000 seeds, harvest 
index and biological 
yield of wheat in 
association with 
fenugreek.  

Tea + soybean 
Tea + soybean+ 
milk vetch 
(Wang et al., 
2022) 
 

- - 
 

Increase in total soil 
carbon, nitrogen and 
phosphorus. 
 

Tea+ soybean, tea+ 
soybean+ milk vetch 
significantly increasing in 
multifunctional resistance 
by 12.07 and 25.86% 
respectively. 

- 

Fallopia 
Multiflora + 
Andrographis 
paniculata (C. 
Liu et al., 2021) 

Improvement of yield 
and quality of F. 
Multiflora. 
Increase in plant height 
and maximum fresh 
weight of root tubers 
Increase in rod diameter 
and fresh weight of root 
by 15 and 12.9%, 
respectively. 

- 
 

Decrease in organic 
matter, nitrogen, 
phosphorus and 
potassium by 23.3, 21.6, 
66,8 and 26.6%, 
respectively.  
pH (monoculture) = 
4.48 a < pH 
(intercropping) = 4.92  
 

Improvement of urease and 
invertase enzyme activities 
by 10.1 and 9.7%, 
respectively.  
Increase in bacteria and 
actinomycetes by 76.9 and 
35.1%, respectively. 
Increase in bacterial 
abundance indices (ACE 
and Chao1) and diversity 
indices (Shannon and 
Simpson).  

- 

Potato onion + 
tomato with 
biochar 
concentrations 
(0, 0,3, 0,6 et 
1,12%). (He et 
al., 2021) 

Increase in yield tomato 
with 0.6 and 1.12% 
biochar.  
Increase in height and 
dry weight of tomato, 
with and without 
biochar. 
 

- Increase in soil moisture 
and pH and decrease in  
NO3

—N and AK, with 
and without biochar.  

Increase in total bacteria 
abundance with 1.12% 
biochar. 
Increase in total fungi 
abundance with the 
application of biochar.  
Increase in beneficial 
microorganisms 
Pseudeurotium and 
Solirubrobacte. 
Reduction of pathogenic 
microorganisms:  Kribbella 
and Ilyonectria. 

 

Wheat + 
Mustard 
(Drakopoulos et 
al., 2020) 

 Systematic suppression of 
the Fusarium infection and 
reduction of mycotoxin 
content in wheat grains:   
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Deoxynivalenol up to 50, 
58 and 56%,  
Zearalenone up to 76, 71, 
and 87%. 

White 
mulberry+ 
Alfalfa  + N 
application (X. 
Zhang et al., 
2021) 

- - Decrease in pH and soil 
moisture in mulberry 
treatments, with and 
without N. 
Decrease in organic 
matter content and soil 
moisture in alfalfa 
treatments, with and 
without N.   

Increase in the values of 
McIntosh, Simpson and 
Shannon-Weaver 
diversities in mulberry 
treatments, with or without 
N.   
Reduction of Shannon- 
Weaver and Simpson 
diversities in alfalfa 
treatments.  

 

Soybean + 
sugarcane (two 
cultivars ZZ1 et 
ZZ9) (Y. Liu et 
al., 2021) 

Increase in crop yield 
and promoting 
sustainable development 
of the sugarcane 
industry.  

- - Increase in bacterial 
community and 
accumulation of N-fixing 
bacteria (ZZ9/soybean > 
ZZ1/soybean). 

 

Onion + Barley 
(Sekine et al., 
2021) 

Influencing onion 
growth by causing a 
reduction in bulb size.  

Significant decline in the 
thrips tabaci population 
(Thysanoptera: Thripidae) 
throughout the cultivation 
period.  
 

- -  

Sugarcane  + 
Peanut (Tang, 
Jiang, et al., 
2021) 

 Improvement of the 
economic benefit by 
87.84 and 36.38% for 
peanut and sugarcane, 
respectively.  

 Increase in total N, 
available N and pH in 
peanut soil.  
Increase in available K 
and pH in sugarcane 
soil.  
Increase in N and P 
content in the soil.   

 Increase in acid 
phosphatase activity by 
44.93 and 32.45% in 
sugarcane and peanut, 
respectively.  
Increase in protease and 
sucrase activities in peanut 
soil, by 32.22 and 46.02%, 
respectively.   
Increase in microbial 
abundance (bacteria, fungi 
and actinomycetes) and 
total microbial abundance.  
Increase in microbial 
rhizospheric abundance 
such as: Acidobacteriaceae 
subgroup 1, DA111 and 
acidobacteria. 
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Rubber fig + 
Plantain (Tetteh 
et al., 2021) 

- - Improvement of the 
SOC content.  
Cropping systems with 
plantain (monoculture or 
intercropping) had high 
bulk density values in 
the 15-30cm depth and 
lower values in the 0-
15cm depth.  
Improvement of the 
hydraulic properties of 
the soil.  

Increase in microbial 
biomasses (Cmic), N 
(Nmic) and P (mic)  

 

Rice + 
Vegetable 
Neptunia (Hei 
et al., 2022) 

Improvement of rice 
yield.  
Increase of the number 
of panicles per unit, 
especially with N 
reduced. 
Improvement of rice 
grain quality.  
Increase in economic 
return of rice, with 
reduced N. 

Decrease in the incidence 
of rice borer (Chilo 
suppressalis). 
Reduction in the 
appearance of leaf folds in 
rice compared to the 
monoculture treatments. 
Reduction in the incidence 
of sheath blight in rice.  
Decrease in the incidences 
of rice leaf blight, leaf 
folding and sheath blight, 
with reduced N. 
  

- -  

Green bean + 
Garlic 
(Mohammadi et 
al., 2021) 

Improvement of green 
bean yield.  
 

Reducing egg densities and 
motile forms of 
Tetranychus urticae Koch 
at all green bean growth 
stages. 
Seven predators of T. 
urticae were collected from 
infested green bean plants 
of which Stethorus 
gilvifrons et Orius niger 
were the main predators. 
Significant increase of O. 
niger density during the 

- - >1 
The LER was greater 
than 1 in all the 
intercropping 
treatments, especially in 
the ratio (3:5).  
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vegetative and flowering 
stage.  
No significant difference 
was observed in S. 
gilvifrons densities 
between intercropping and 
monoculture. 
Increase of the values of 
Shannon diversity index 
and those of the Pielou 
evenness index of the 
composition of T. urticae. 

Rosemary+ 
pepper (X.-W. 
Li et al., 2021)  

- Significant effect on the 
dynamics of pest 
populations: 
 Significant decrease in the 
densities of Frankliniella 
intonsa, Myzus persicae 
and Bemisia tabaci 
compared to pepper 
monoculture;  
No effect observed on the 
population densities of the 
predator Orius sauteri or 
parasitoïd Encarsia 
formosa.  

- -  

Maize + 
different bean 
varieties (pinto 
bean, dwarf 
bean, kidney 
bean, white 
bean and sword 
bean) (Ziaie-
Juybari et al., 
2021) 

Improvement of bean 
plant height, especially 
in maize/ pinto bean 
treatment.  

Significant decrease of 
Tetranychus urticae 
density by 83% and 62% in 
maize/ white bean and 
maize/ sword bean 
treatments, respectively.  
Significant decrease of the 
severity of minor leaf 
(Delia platura) by 30%; 
Increase of Thrips tabaci 
population by 30%.  
Significant reduce of the 
rust disease caused by the 
pathogen Uromyces 
appendiculatus in maize/ 
pinto bean and maize/ 
sword bean treatments by 
37% and 98%, 
respectively.  

- - >1 
The most effective 
LERs 1,13 et 1,21 were 
obtained in maize/  
dwarf bean and 
maize/pinto bean 
treatments, respectively.  
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The Shannon-Wiener index 
and the Simpson index 
indicate that the pest 
diversity in the 
intercropping treatments 
(4.5%) was higher than that 
in the monoculture 
treatments (1.6%).  
Increase in the degree of 
pest control by maize/ pinto 
bean and maize/ kidney 
bean treatments with 
increasing pest community 
in the monocrop treatments  
 

Rice + bean 
(Shah et al., 
2021) 

Improvement of rice 
plant height, tiller 
number and panicle 
lenght.   
Positive effect on 
number of spikelets per 
panicle.  
Increase in the seeds per 
panicle. 
Improvement of the total 
rice yield.  

Decrease in weed incidence 
by 65% throughout the trial 
period.  

Increase in the content 
of N, P and K.  

-  

Faba bean + 
Onion (Farghly 
et al., 2021) 

Significant increase in: 
 Onion yield, plant 
height, bulb diameter, 
number of leaves and 
plant fresh weight, 
especially in (1 :3) ratio. 
Faba bean yield, 
especially in (3:1) ratio. 

- The most efficient N, P 
and K uptake was 
recorded in (3 :1) ratio. 

- >1 
Highest LERs were 
obtained in the 
following ratios (3 :1) 
and (1 :3) which could 
be a new model to get 
better land use and 
irrigation.  
 

Maize + 
soybean 
(Berdjour et al., 
2020) 

Decrease in total yields 
of maize and soybean.  

Decrease in the weed 
biomass compared to the 
maize monoculture system. 
Reducing of the number of 
grass and broadleaf weed 
species.  
Decrease in the weed 
species diversity index with 
maize maturity type, 

- - >1 
Indicating better 
productivity of 
intercropping yields and 
an average of 40% land 
retained. 
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increasing soybean row 
spacing, and in 
intercropping. 

Two barley 
cultivars 
(Marthe et 
Odilia) + Peas 
  
Two barley 
cultivars 
(Marthe et 
Odilia) + 
linseed (Reuter 
et al., 2022) 

Monoculture of the two 
barley cultivars recorded 
the highest barley yields. 
Marthe barley/ peas was 
more productive than 
that with linseed. Unlike 
Odilia barley which 
showed a more 
interesting yield by 
combining it with 
linseed. 
The highest percentage 
of barley grain protein 
was recorded in the 
association of the two 
cultivars with pea, 
followed by their 
association with linseed.  

   >1 
The highest LER was 
obtained in the 
association of Odilia 
barley/ peas, then Odilia 
barley/ linseed, showing 
their ability to use land 
more efficiently.   

Melon + 
cowpea 
(Cuartero et al., 
2022) 

Improvement of melon 
yield, especially in 
melon/ cowpea arranged 
in the same line and in 
(2:1) ratio. 
Increase in the number 
of melons.  
Decrease in cowpea 
yield.  

- Significant increase in 
total organic N and C, 
compared to melon 
monoculture treatments. 
Increase in available P. 
No significant 
difference was noticed 
for available K. 
 

No significant difference in 
Shannon or Chao1 diversity 
indices was found between 
the agrosystems, on the 
other hand there was a 
significant difference in the 
structure of the bacterial 
community between the 
cropping systems. 
Intercropping treatments 
were characterized by a 
greater abundance of 
beneficial microorganisms 
such as Pseudomonas, 
Bacillus, Streptomyces and 
Sphingomonas.  
Phosphatase and B-
glucosidase enzyme 
activities were significantly 
increased in the 
intercropping systems, 

- 
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compared to the melon 
monoculture. 
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Table 2: Agroecological solutions for the major problems in contemporary agriculture. 

 

Major problems Agroecological 
solution 

Relevance REFERENCE 

Climate change Agroforestry Offers benefits such as soil erosion control, improved soil 
fertility, and regulation of temperatures. 

(Jose, 2012; Kay et al., 2019; Mbow et al., 2014; 
Montagnini & Metzel, 2017; Pantera et al., 2018; Rosati et 
al., 2018; R. Sharma et al., 2016) 

Crop rotation Effective strategies for climate change adaptation, 
preventing soil erosion and enhancing water use 

efficiency. 

 

Cover crop Contribute to erosion reduction, nitrogen fixation, 
improved soil health, and organic matter accumulation 

(Abdelmajid et al., 2021; Bonciarelli et al., 2016; Borrelli et 
al., 2014; Debray et al., 2019; Rosa-Schleich et al., 2019; 
Shahzad et al., 2022; Yu et al., 2022) 

Organic 
amendements 

Compost, crop residues and mulch help retain water, 
especially in arid environments, while reducing 

greenhouse gas emissions. 

 

Reducing tillage Aids carbon sequestration, provide a high level of soil 
organic matter and lowers energy input dependence. 

(Carpio et al., 2017; Debray et al., 2019; Garcia et al., 2018; 
Guardia et al., 2016; Kaye & Quemada, 2017; Ruiz-
Colmenero et al., 2013; Vicente-Vicente et al., 2016) 

Monoculture Intercropping Improves soil fertility by increasing the abundance of 
beneficial microbes and the nutrient-use efficiency 

 

Higher yields can be achieved through intercropping due 
to increased growth rate, biomass production, and efficient 

resource use. 

(Aguilera et al., 2020; Francaviglia et al., 2019; D. L. Liu et 
al., 2017; Wheeler et al., 2015) 

Play a role in pest control, reducing the need for chemical 
inputs, and can suppress weed growth and manage 

diseases. The functional diversity provided by 
intercropping limits the spread of pathogens. 
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Chemical 
fertilization 

Crop 
diversification with 

legumes 

Crop rotations and legumes are practiced to improve soil 
organic carbon and nutrient availability. 

Legumes, with their nitrogen-fixing ability and carbon 
release, contribute to soil fertility and microbial growth. 

(Aguilera et al., 2013, 2020; Dachraoui & Sombrero, 2020; 
Lee et al., 2019; Litskas et al., 2017; Lovarelli & Bacenetti, 
2017; Peltre et al., 2015; Smith et al., 2015) 

Cover crops Vegetation covers are widely used in agroecology to 
reduce chemical fertilizer usage, prevent water 

contamination, and improve soil fertility and water quality. 

(Iqbal et al., 2019; X. F. Li et al., 2018; Šeremešić et al., 
2018; Solanki et al., 2020; Tang, Jiang, et al., 2021; 
Taschen et al., 2017; Willey, 1990; R. Zhang et al., 2021) 

Split fertilization Split application of fertilizers over time can match supply 
and demand, improving efficiency and limiting 

contamination 

 

Organic fertlization Such as manure and compost, positively influence carbon 
and nitrogen dynamics, enhance microbial communities, 

and increase enzymatic activities in the soil 

(Bi et al., 2019; Elouattassi et al., 2023; He et al., 2021; Hei 
et al., 2022; Liang et al., 2020; Rezaei-Chiyaneh et al., 
2020; Shah et al., 2021; Sun et al., 2021; Zyada et al., 2022) 

Biofertilizers Bacteria, fungi, algae or biological compounds including 
plant growth-promoting bacteria, are an eco-friendly 
alternative to synthetic fertilizers, ensuring nutrient 

availability to host plants. 
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